Математические способности ребёнка. Математические способности по Б.В. Гнеденко

Особенности развития математических и спортивных способностей школьников

2.1 Психологическая структура математических способностей

способность школьник математический спортивный

Математика - это инструмент познания, мышления, развития. Он богат возможностями творческого обогащения. Ни один школьный предмет не может конкурировать с возможностями математики в воспитании мыслящей личности. Особое значение математики в умственном развитии отметил еще в ХVIII веке М.В. Ломоносов: "Математику уже затем учить следует, что она ум в порядок приводит".

Существует общепризнанная классификация способностей. Согласно ей способности делятся на общие и специальные, определяющие успехи человека в отдельных видах деятельности и общения, где необходимы особого рода задатки и их развитие (способности математические, технические, литературно-лингвистические, художественно-творческие, спортивные и т.д.).

Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

В исследование математических способностей внесли свой вклад такие ученые в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, "школьные" способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А. Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

Из работ отечественных авторов необходимо упомянуть оригинальную статью Д. Мордухай-Болтовского "Психология математического мышления", опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особое значение "бессознательному мыслительному процессу", утверждая, что "мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка" [цит. по 13, с. 45]. Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, - пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания [цит. по 13, с. 48]. По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся "черновая" работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

* "сильную память", память на "предметы того типа, с которыми имеет дело математика", память скорее не на факты, а на идеи и мысли.

* "остроумие", под которым понимается способность "обнимать в одном суждении" понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отдалённых казалось бы, совершенно разнородных предметах.

* быстроту мысли (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

Д. Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков - "геометров" и "алгебраистов". Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как "геометр".

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина "способности", но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем "синдром математической одаренности".

Говоря о структуре математических способностей, следует отметить вклад в разработку данной проблемы В.А. Крутецкого. Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.

Общая схема структуры математических способностей в школьном возрасте

1. Получение математической информации

А) Способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи.

2. Переработка математической информации.

А) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

Б) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

В) Способность к свёртыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

Г) Гибкость мыслительных процессов в математической деятельности.

Д) Стремление к ясности, простоте, экономности и рациональности решений.

Е) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

А) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

4. Общий синтетический компонент.

А) Математическая направленность ума.

Не входят в структуру математической одарённости те компоненты, наличие которых в этой структуре не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума.

1. Быстрота мыслительных процессов как временная характеристика.

Индивидуальный темп работы не имеет решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные производить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трёхзначных чисел), но не умеющие решать сколько-нибудь сложные задачи.

Известно также, что существовали и существуют феноменальные "счётчики" не давшие математике ничего, а выдающийся математик А. Пуанкаре писал о себе, что без ошибки не может сделать даже сложение.

3. Память на цифры, формулы, числа. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

4. Способность к пространственным представлениям.

5. Способность наглядно представлять абстрактные математические отношения и зависимости.

Следует подчеркнуть, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере её можно считать общей схемой структуры математических способностей, в какой мере её можно отнести к вполне сложившимся одарённым математикам.

Типы математических складов ума.

Хорошо известно, что в любой области науки одарённость как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одарённости всегда можно наметить какие-то основные типологические различия в структуре одарённости, выделить определённые типы, значительно отличающиеся один от другого, разными путями приходящие к одинаково высоким достижениям в соответствующей области.

Об аналитическом и геометрическом типах упоминается работах А. Пуанкаре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным; б) абстрактного над образным и в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип.

Мышление представителей этого типа характеризуется явным преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлечёнными схемами. У них нет потребности в наглядных опорах, в использование предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости "наталкивают" на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализом геометрической схемы или чертежа.

Геометрический тип

Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим условно можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлечёнными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.

Гармонический тип.

Для этого типа характерно относительное равновесие хорошо развитых словесно-логического и наглядно-образного компонентов при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся чётко осознают, что содержание обобщения не исчерпывается частными случаями. Успешно осуществляют они и образно-геометрический подход к решению многих задач.

Установленные типы, по-видимому, имеют общее значение. Наличие их подтверждается многими исследованиями [цит. по 10, с. 115].

Возрастные особенности математических способностей.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из ранних исследований Ж. Пиаже. Пиаже считал, что ребёнок только к 12 годам становится способным к абстрактному мышлению. Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришёл к выводу, что в плане наглядно-конкретном школьник мыслит до 12-13 лет, а мышление в плане формальной алгебре, связанной с овладением операциями, символами, складывается лишь к 17 годам.

Исследование отечественных психологов дают иные результаты. Ещё П.П. Блонский писал об интенсивном развитие у подростка (11-14 лет) обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах.

Возникает законный вопрос: в какой мере можно говорить о математических способностях по отношению к младшим школьникам? Исследования под руководством И.В. Дубровиной, даёт основание ответить на этот вопрос следующим образом. Конечно, исключая случаи особой одарённости, мы не можем говорить о сколько-либо сформированной структуре собственно математических способностей применительно к этому возрасту. Поэтому понятие "математические способности" условно в применении к младшим школьникам - детям 7-10-лет, при исследовании компонентов математических способностей в этом возрасте речь обычно может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже и в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ сотрудниками Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывает, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может "стать" весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер.

Произвольности здесь быть не может. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений.

Таким образом, возрастные особенности, о которых говорится, - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

Половые различия в характеристике математических способностей.

Оказывают ли какое-нибудь влияние на характер развития математических способностей и на уровень достижений в соответствующей области половые различия? Имеют ли место качественно своеобразные особенности математического мышления мальчиков и девочек в школьном возрасте?

В зарубежной психологии имеются работы, где, сделана попытка выявить, отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн, говорит о своём не согласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склоны к абстрактному мышлению и менее способны в этом отношении. Также проводились исследования под руководством Ч. Спирмена и Э. Торндайка, они пришли к выводу, что "в отношении способностей большой разницы нет", но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В. Дубровиной и С.И. Шапиро, они не обнаружили каких-либо качественных специфических особенностей в математическом мышление мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности.

Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различие надо отнести за счёт разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии.

Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.

1. Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

2. Возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

3. Соответствующие исследования в отечественной психологии не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек.

Генетико-математические методы психогенетики

В 20--30-х годах работами С. Райта, Дж. Холдена и Р. Фишера были заложены основы генетико-математических методов изучения процессов, происходящих в популяциях...

Изучение условий развития творческих способностей детей 5-6 лет в условиях дошкольного образовательного учреждения

Процесс развития личности человека происходит на протяжении всей его жизни и затрагивает все ее стороны: совершенствование высших психических функций, становление черт характера, развитие способностей...

Личность и направленность личности в психологии

Различают статистическую и динамическую структуры личности. Под статистической структурой понимается отвлеченная от реально функционирующей личности абстрактная модель, характеризующая основные компоненты психики индивида...

Механизмы взаимопонимания в общении

В психологической науке взаимопонимание рассматривается как комплексный феномен, состоящий, по крайней мере, из четырех компонентов. Во-первых...

Образное мышление как необходимая компонента теоретического мышления (на материале математики)

Подобные представления об этих вещах весьма полезны, поскольку ничто не является для нас более наглядным, чем фигура, ибо ее можно осязать и видеть. Р...

Особенности развития математических и спортивных способностей школьников

В литературе широко используется понятие спортивных способностей. К сожалению, это понятие до сих пор четко не определено. В него включают все параметры...

Половая дифференциация: мышление

Привлекательность диагностики общих, а не специальных способностей состоит в том, что есть возможность решить "одним махом" ряд проблем, поскольку общие способности необходимы для любой деятельности и, по мнению многих исследователей...

Психологическая характеристика математических способностей школьников. Педагогические способности и их диагностика

Структура совокупности психических качеств, которая выступает как способность, в конечном счете, определяется требованиями конкретной деятельности и является различной для разных видов деятельности. Так...

Психологические особенности допроса и других процессуальных действий в судебном следствии

Психологическая структура судебной деятельности складывается из: 1.Познавательной; 2.Конструктивной; 3.Воспитательной; Если на предварительном следствии основной является познавательная деятельность, то в суде основной...

Психология музыкальных способностей

Пути воспитания и развития педагогических способностей у учителей

Развитие способностей связано с усвоением и творческим применением знаний, навыков и умений. Особенно важна обобщенность знаний и умений -- способность человека использовать их в различных ситуациях...

Современные представления о структуре личности в трудах отечественных и зарубежных ученых

Структура личности - основные части личности и способы взаимодействия между ними. Структура личности - то, из чего (из каких элементов) и как построена личность. В самых разных моделях...

Способности и возраст

Каждая способность имеет свою структуру, где можно различить опорные и ведущие свойства. Например, основным свойством способности к изобразительному искусству будет высокая природная чувствительность зрительного анализатора...

Структура личности с позиций деятельностного подхода

Личность человека представляет собой сложную психическую систему, находящуюся в состоянии непрерывного движения, динамики, развития. Как системное образование личность включает в себя элементы...

Формы и методы работы психолога с одаренными детьми

Любая деятельность, которой овладевает человек, предъявляет высокие требования к его психологическим качествам (особенностям интеллекта, эмоционально-волевой сферы, сенсомоторики)...

«Очень большой и сложный вопрос: имеются ли у данного ученика математические способности или нет?

Прежде всего, что понимать под наличием способностей: творческие способности или же способность успешно преодолеть школьную программу по математике, программу втуза?

Слишком большой разброс начальных данных в исходном материале: одни не научились учиться и считают, что если они запомнили без понимания правила, методы решения, то это всё, что от них требуется; других же с раннего детства приучили прежде понимать, а потом запоминать, и к самостоятельному поиску решений; третьих - пользоваться правилами решения, придуманных для разных типов задач, но не самостоятельно мыслить.

Третий тип хорошо известен преподавателям, они знают этих натасканных на правилах мальчиков и девочек, у которых моментально слетают с языка заученные формулировки, но нет привычки искать самостоятельное решение.

Мне приходилось встречаться со школьниками всех трёх указанных типов первоначальной математической подготовки. Конечно, те, кто привык понимать и самостоятельно мыслить, резко выделялись на фоне остальной серенькой массы. Но затем, когда после двух-трёх лет переподготовки и остальные подходили к необходимости понимания материала и отказывались от привычки зазубривания без понимания, появлялись и в их среде яркие личности, способные вносить нечто новое , предлагать неожиданные решения, проявлять свои истинные способности.

Моё убеждение, что способности к хорошему познанию математики, по крайней мере школьной и вузовской, имеют все нормальные дети. Их только нужно научить учиться. Научить пользоваться тем даром, которым наделила человека природа - способностью мыслить. Некоторые школьники буквально менялись коренным образом, когда в их первоначальном математическом образовании удавалось ликвидировать пропуски в знаниях и умениях. Поэтому я резко осуждаю тех, кто слишком рано приклеивает к тому или иному учащемуся ярлык неспособного к математике. Я позволю себе в качестве примера привести самого себя: включительно до шестого класса мне тяжело давалась математика, я испытывал постоянный страх перед задачами.

Я помню, как говорил родителям: «как бы было хорошо учиться, если бы не было математики». В 1925 г. семья переехала в Саратов. Обнаружилось, что в саратовской школе прошли по математике больше, и мне пришлось догонять класс. Я самостоятельно изучил нужные разделы и обратился к прежнему материалу, в котором у меня также оказались пробелы.

Затем мне на глаза попался сборник конкурсных задач, предлагавшихся при поступлении в Петербургский институт путей сообщения. Я перерешал значительное число задач самостоятельно. Через полгода я прослыл лучшим учеником класса по математике. Всё дело в том, что при самостоятельной работе над учебником я доводил дело до понимания и только затем шёл дальше, предварительно закрепляя пройденный материал самостоятельным решением задач. Затем в университете я также занял положение математического лидера, хотя речь шла только об учебном процессе, а не о собственном творчестве. Потребовалось много лет, чтобы я выдвинул проблемы для исследования и начал влиять на творческие интересы других.

Будучи студентом университета, я придерживался такого правила: внимательно слушал лекции, в тот же день просматривал сделанные краткие записи и расширял полученные сведения, прочитывая соответствующие места учебника. Изученное немедленно закреплял несколькими самостоятельно решенными задачами. Такой способ повторения помогал мне избегать горячки перед экзаменами. Мне достаточно было освежить в памяти ранее изученное.

Я никогда не позволял себе идти дальше, не поняв предыдущего. Пожалуй, имеет смысл сказать, что сразу же после лекций, после обдумывания, я вкратце записывал содержание лекции, уделяя внимание четкости формулировок определений и теорем. Дополнительные сведения, почерпнутые из книг, я также помещал после записи содержания лекции. Мои записки пользовались успехом на курсе, их брали, переписывали, просили на время каникул для пересдачи. В результате мне не удалось сохранить ни одной такой тетради, все они разошлись по рукам.

Я считаю, что составление записок мне принесло двойную пользу. Во-первых, я с самого начала изучал как следует всё новое, что нам излагалось и, во-вторых, я приучался кратко излагать то основное, что следовало знать и уметь применять. Эта привычка к кратким и чётким формулировкам сохранилась у меня на всю дальнейшую жизнь.

Если говорить о способностях воспринимать курс школьной и вузовской математики, то я убеждён в том, что в большинстве случаев отсутствие способностей приписывают тем, кто не хочет учиться или же имеет серьёзные пробелы в предшествующих частях курса и не считает нужным восстановить своевременно непознанное. Многолетний опыт общения со студентами, школьниками и их родителями убедил меня в том, что, как правило, неудачи усвоением курса математики связаны не с отсутствием математических способностей, а с отсутствием прочных знаний фундаментальных понятий, с ленью ума, которая мешает систематической работе над материалом, и со стремлением се познание свести к запоминанию без понимания. Мы же должны помнить, что только в самостоятельном преодолении трудностей - ключ к познанию и уверенности в своих гениях и знаниях.

В подавляющем большинстве случаев, когда говорят об отсутствии у учащегося математических способностей для познания обязательного курса, речь должна идти о другом - либо о неумении, либо о нежелании учиться.

Заключение же об отсутствии способностей обычно педагогически необосновано и вредно. Такое заключение способно угнетающе подействовать на психику учащегося. Это во-первых. А во-вторых, оно как бы выдает индульгенцию лентяю или же не научившемуся учиться.

Умение учиться не приходит само собой, а нуждается в систематическом воспитании, постоянном внимании учителей и серьёзных усилиях учащихся. Цель школьного обучения состоит не в том, чтобы перегрузить память учащихся сведениями, которые не превращаются в орудие труда, а в том, чтобы сделать ум пытливым, подвижным, способным анализировать новые ситуации, находить подходы к решению возникающих проблем. Тот, кто делает ставку только на память, на зубрёжку, отключает мысль, разум от работы по познанию. Память обязана играть роль активного помощника разума, и не следует навязывать ей несвойственную роль единственного средства познания. В памяти должны храниться основные сведения и идеи, которые по мере надобности превращаются в активные методы.

Точно так же невозможно научить говорить на чужом языке, если только снабдить память словами и правилами. Этого мало. Необходимо ещё приучить человека активно пользоваться полученным запасом знаний. А для этого нужно говорить, т. е. заставлять знания не лежать мертвым грузом в недрах памяти, а активно действовать. Для математики упражнения на решение задач, на проведение логических заключений так же обязательны, как разговор на чужом языке при его изучении».

Гнеденко Б.В., Математика и жизнь, М., «Комкнига», 2006 г., с.118-121.

Часть I
ИНДИВИДУАЛЬНО-ПСИХОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЛИЧНОСТИ

В.А. Крутецкий. Математические способности и личность

Прежде всего следует отметить характеризующее способных математиков и совершенно необходимое для успешной деятельности в области математики «единство склонностей и способностей в призвании», выражающееся в избирательно-положительном отношении к математике, наличии глубоких и действенных интересов в соответствующей области, стремлении и потребности заниматься ею, страстной увлеченности делом. Нельзя стать творческим работником в области математики, не переживая увлеченности этой работой, - она порождает стремление к поискам, мобилизует трудоспособность, активность. Без склонности к математике не может быть подлинных способностей к ней. Если ученик не чувствует никакой склонности к математике, то даже хорошие способности вряд ли обеспечат вполне успешное овладение математикой. Роль, которую здесь играют склонность, интерес, сводится к тому, что интересующийся математикой человек усиленно занимается ею, а следовательно, энергично упражняет и развивает свои способности . На это указывают постоянно сами математики, об этом свидетельствуют вся их жизнь и творчество...

Составленные нами характеристики одаренных учащихся ярко свидетельствуют о том, что способности действенно развиваются только при наличии склонностей или даже своеобразной потребности в математической деятельности (в относительно элементарных ее формах). Все без исключения наблюдаемые нами дети обладали обостренным интересом к математике, склонностью заниматься ею, ненасытным стремлением к приобретению знаний по математике, решению задач.

Еще одна черта характера свойственна подлинному ученому - критическое отношение к себе, своим возможностям, своим достижениям, скромность, правильное отношение к своим способностям. Надо иметь в виду, что при неправильном отношении к способному школьнику - захваливании его, чрезмерном преувеличении его достижений, афишировании его способностей, подчеркивании его превосходства над другими - очень легко внушить ему веру в свою избранность, исключительность, заразить его «стойким вирусом зазнайства».

И наконец, последнее. Математическое развитие человека невозможно без повышения уровня его общей культуры. Нужно всегда стремиться к всестороннему, гармоничному развитию личности. Своеобразный «нигилизм» ко всему, кроме математики, резко одностороннее, «однобокое» развитие способностей не могут способствовать успешности в математической деятельности.

Анализируя схему структуры математической одаренности, мы можем заметить, что определенные моменты в характеристике перцептивной, интеллектуальной и мнемической сторон математической деятельности имеют общее значение... Поэтому развернутую схему структуры можно представить и в иной, чрезвычайно сжатой формуле: математическая одаренность характеризуется обобщенным, свернутым и гибким мышлением в сфере математических отношений, числовой и знаковой символики и математическим складом ума. Эта особенность математического мышления приводит к увеличению скорости переработки математической информации (что связано с заменой большого объема информации малым объемом - за счет обобщения и свертывания) и, следовательно, экономии нервио-психических сил... Указанные способности в разной степени выражены у способных, средних и неспособных учеников. У способных при некоторых условиях такие ассоциации образуются «с места», при минимальном количестве упражнений. У неспособных же они образуются с чрезвычайным трудом. Для средних же учащихся необходимым условием постепенного образования таких ассоциаций является системе специально организованных упражнений, тренировка.

СПЕЦИФИЧНОСТЬ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

Возникает вопрос: в какой степени выделенные нами компоненты являются специфически математическими способностями?

Рассмотрим с этой точки зрения одну из основных способностей, выделенных нами в структуре математической одаренности, - способность к обобщению математических объектов, отношений и действий. Разумеется, способность к обобщению - по природе своей общая способность и обычно характеризует общее свойство обучаемости.

Но речь-то идет в данном случае не о способности к обобщению, а о способности к обобщению количественных и пространственных отношений, выраженных в числовой и знаковой символике.

Чем можно аргументировать нашу точку зрения, заключающуюся в том, что способность к обобщению математического материала есть специфическая способность?

Во-первых, тем, что эта способность проявляется в специфической сфере и может не коррелировать с проивлением соответствующей способности в других областях... Иными словами, человек; талантливый вообще, может быть бездарным в математике. Д.И. Менделеев в школе отличался большими успехами в области математики и физики и получал нули н единицы по языковым предметам. А.С. Пушкин, судя по биографическим данным, учась в лицее, пролил много слез над математикой, приложил много трудов, но «успехов приметных не оказал».

Правда, есть немало случаев и сочетания математической и, например, литературной одаренности. Математик С. Ковалевская была талантливой писательницей, ее литературные произведения оценивались весьма высоко. Известный математик XIX в В.Я. Буняковский был поэтом. Английский профессор математики Ч.Л. Доджсон (XIX в.) был талантливым детским писателем, написал под псевдонимом Льюиса Кэррола известную книгу «Алиса в стране чудес». С другой стороны, поэт В.Г. Бенедиктов написал популярную книгу по арифметике. А.С. Грибоедов успешно учился на математическом факультете университета. Известный драматург А.В. Сухово-Кобылин получил математическое образование в Московском университете, проявлял большие способности к математике и за работу «Теория цепной линии» получил золотую медаль. Серьезно интересовался математикой Н.В. Гоголь. М.Ю. Лермонтов очень любил решать математические задачи. Серьезно занимался методикой преподавания арифметики Л.Н. Толстой.

Во-вторых, можно указать на целый ряд зарубежных исследований, которые показали (правда, основываясь только на тестовой методике и корреляционном и факторном анализе) слабую корреляцию между показателем интеллекта (известно, что способность к обобщению - одна из важнейших характеристик общего интеллекта) и тестами на достижения в математике.

В-третьих, для обоснования нашей точки зрения можно сослаться на учебные показатели (оценки) детей в школе. Многие учителя указывают, что способность к быстрому и глубокому обобщению может проявляться в каком-нибудь одном предмете, не характеризуя учебной деятельности школьника по другим предметам. Некоторые из наших испытуемых, проявляющих, например, способность к обобщению «с места» в области математики, не обладали этой способностью в области литературы, истории или географии. Имели место и обратные случаи: учащиеся, хорошо и быстро обобщающие и систематизирующие материал по литературе, истории или биологии, не проявляли подобной способности , в области математики.

Все сказанное выше позволяет нам сформулировать положение о специфичности математических способностей в следующем виде., - Те или иные особенности, умственной деятельности школьника могут характеризовать только его математическую деятельность, проявляться только в сфере пространственных и количественных отношений, выраженных средствами числовой и знаковой символики, и не характеризовать других видов его деятельности, не коррелировать с соответствующими проявлениями в других областях. Таким образом, общие по своей природе умственные способности (например, способность к обобщению) могут в ряд случаев выступать как специфические способности (способность к обобщению математических объектов, отношений и действий).

Мир математики - мир количественных и пространственных отношений, выраженных посредством числовой и знаковой символики, очень специфичен и своеобразен. Математик имеет дело с условными символическими обозначениями пространственных и количественных отношений, мыслит ими, комбинирует, оперирует ими. И в этом очень своеобразном мире, в процессе весьма специфической деятельности общая способность так преобразуется, так трансформируется, что, оставаясь общей по своей природе, выступает уже как специфическая способность.

Разумеется, наличие специфических проявлений общей способности никак не исключает возможности других проявлений этой же общей способности (как наличие у человека способностей к математике не исключает наличия у него же способностей и в других областях).

НЕКОТОРЫЕ СООБРАЖЕНИЯ О ПРИРОДЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

Материалы нашего исследования - анализ многочисленной литературы, анализ случаев чрезвычайно высокой математической одаренности в детском и зрелом возрасте (последнее - по биографическим материалам) - позволяют выделить некоторые факты, представляющие особый интерес для постановки вопроса о природе математической одаренности. Эти факты таковы:

  1. часто (хотя и не обязательное) весьма раннее формирование способностей к математике, нередко в неблагоприятных условиях (например, при явном противодействии родителей, опасающихся столь раннего яркого проявления способностей) и при отсутствии на первых порах систематического и целенаправленного обучения;
  2. острый интерес и склонность к занятиям математикой, также часто проявляющиеся в раннем возрасте;
  3. большая (а часто избирательная) работоспособность в области математики, связанная с относительно малой утомляемостью в процессе напряженных занятий математикой;
  4. характеризующая очень способных к математике людей математическая направленность сума как своеобразная тенденция воспринимать многие явления через призму математических отношений, осознавать их в плане математических категорий.

Все это позволяет выдвинуть гипотезу о роли прирожденных функциональных особенностей мозга в случаях особой (подчеркиваем это!) математической одаренности - мозг некоторых людей своеобразно ориентирован (настроен) на выделение из окружающего мира раздражителей типа пространственных и числовых отношений и символов и на оптимальную работу именно с такого рода раздражителями. В ответ на раздражители, имеющие математическую характеристику, связи образуются относительно быстро, легко, с меньшими усилиями и меньшей затратой сил. Аналогично неспособность к математике (имеются в виду также крайние случаи) имеет своей первопричиной большую затрудненность выделения мозгом раздражителей типа математических обобщенных отношений, функциональных зависимостей, числовых абстрактов и символов и затрудненность операций с ними. Иными словами, некоторые люди обладают такими прирожденными характеристиками строения и функциональных особенностей мозга, которые крайне благоприятствуют (или, наоборот, весьма не благоприятствуют) развитию математических способностей.

И на сакраментальный вопрос; «Математиком можно стать или им нужно родиться?» - мы гипотетически ответили бы так: «Обычным математиком можно стать; выдающимся, талантливым математиком нужно и родиться». Впрочем, здесь мы не оригинальны, - многие выдающиеся ученые утверждают это же. Мы уже приводили слова академика А.Н. Колмогорова: «Талант , одаренность... в области математики... даны от природы не всем». О том же говорит и академик И.Е. Тамм: «Творить новое... под силу только специально одаренным людям» (речь идет о научном творчестве высокого уровня. - В.К.). Все это сказано пока лишь в порядке гипотезы.

Выяснение физиологической природы математических способностей является важной задачей дальнейших исследований в этой области. Современный уровень развития психологии и физиологии вполне позволяет поставить вопрос о физиологической природе и физиологических механизмах некоторых специфических способностей человека.

Крутецкий В.А. Психология математических способностей школьников. М., 1968, с.380-390, 397-400

1.2 Математические способности и их структура

Так в чем же заключаются математические способности? Или они есть ни что иное, как качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Является ли математическая способность унитарным или интегральным свойством? В последнем случае можно говорить о структуре математических способностей, о компонентах этого сложного образования. Ответы на эти вопросы искали психологи и педагоги еще начала века, но до сих пор нет единого взгляда на проблему математических способностей. Попробуем разобраться в этих вопросах, проанализировав работы некоторых ведущих специалистов, работавших над этой проблемой.

Пытаясь разобраться в психологии математического мышления, Д. Мордухай-Болтовской выделяет в нем два процесса: постановку проблемы и ее решение, и указывает свойства ума, необходимые для успешного осуществления этих процессов. Для успешной постановки проблемы главным необходимым условием он считает творческое воображение: “При самом выборе проблемы иногда необходимо делать гипотезу, необходима не точная цепь силлогизмов, а воображение” (65, с.495). Второй составляющей называет память на схемы рассуждений и бессознательные мыслительные процессы.”Мышление математика … глубоко внедряется в бессознательную сферу, то всплывая на ее поверхность, то погружаясь в глубину” (65, с.496). Так же Д. Мордухай-Болтовской выделяет остроумие, как одно из характерных свойств математической способности ¾ “способность обнимать умом зараз два совершенно разнородных предмета” (65, с.496) (то есть остроумие ¾ это способность объединять в одном суждении понятия из двух малосвязанных областей) ¾ и, наконец, быстроту математического мышления. При этом он особо отмечает, что при анализе математической способности следует резко отличать склонность к известному роду занятий от способностей (65, 66).

А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Кроме того, для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода ¾ есть основной элемент математического творчества (74).

Л.А. Венгер относит к математическим способностям такие особенности умственной деятельности, как обобщение математических объектов, отношений и действий, то есть способность видеть общее в разных конкретных выражениях и задачах; способность мыслить “свернутыми”, крупными единицами и “экономно”, без лишней детализации; способность переключения с прямого на обратный ход мысли (13).

Б.А. Кордемский не говорит о математических способностях, а выделяет элементы математического мышления. К ним он относит инициативность (желание самому постигнуть проблему, стремление к самостоятельному поиску способов и средств решения задачи), гибкость и критичность ума (придумывание и применение нешаблонных, оригинальных, остроумных приемов решения задач и методов рассуждений с постоянной проверкой их правильности, строгости и практической ценности) (42, 43). Кроме этого, он выделяет и такой элемент, как волевые усилия, под которыми понимает “упорство и настойчивость, которые проявляются в преодолении трудностей, возникающих в процессе овладения математическими методами при решении задач”(42, с.34).

Для того чтобы понять, какие еще качества требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном: что нет, и не может быть единственной ярко выраженной математической способности ¾ это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математическую память на схемы рассуждений и доказательств, методы решения задач и способы подхода к ним. Одним из них является В.А. Крутецкий. Он так определяет математические способности: ”Под способностями к изучению математики мы понимаем индивидуально-психологические особенности(прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики” 948, с.41). В своей работе мы, главным образом, будем опираться на исследования именно этого психолога, так как его исследования этой проблемы и на сегодняшний день являются самыми глобальными, а выводы наиболее экспериментально обоснованными. Итак, В.А. Крутецкий различает девять способностей (компонентов математических способностей):

Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

Способность к оперированию числовой и знаковой символикой;

Способность к “последовательному, правильно расчлененному логическому рассуждению”, связанному с потребностью в доказательствах, обосновании, выводах;

Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

Математическая память. Можно предположить, что ее характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики, как геометрия.

Большинство психологов и педагогов, говоря о математических способностях, опираются именно на эту структуру математических способностей В.А. Крутецкого. Однако в процессе различных исследований математической деятельности учеников, проявляющих способности к этому школьному предмету, некоторыми психологами были выделены и другие компоненты математических способностей. В частности, нас заинтересовали результаты исследовательской работы З.П. Горельченко (20). Он отметил у способных к математике учеников следующие особенности. Во-первых, он уточнил и расширил компонент структуры математических способностей, называемый в современной психологической литературе “обобщение математических понятий” и высказал мысль о единстве двух противоположных тенденций мышления учащегося к обобщению и “сужению” математических понятий. В указанном компоненте возможно видеть отражение единства индуктивного и дедуктивного методов познания учащимися нового в математике. Во-вторых, диалектические зачатки в мышлении учащихся при усвоении новых математических знаний. Это проявляется в том, что почти в любом отдельном математическом факте наиболее способные учащиеся стремятся усмотреть, понять факт, ему противоположный, или, по крайне мере, рассмотреть предельный случай исследуемого явления. В-третьих, он отметил особое повышенное внимание к возникающим новым математическим закономерностям, противоположным ранее установленным. Мышление увлеченных математикой школьников отличается особой восприимчивостью к математическим контрастам, не связанными с предыдущими рассматриваемыми явлениями, не вытекающими из них, а иногда и вступающими в противоречие с ними. Указанная особенность математического поведения наиболее способных учащихся тесно связана с возникновением у них элементов диалектического мышления и вместе с ними служит большим стимулом, побуждающим учащихся к новым математическим раздумьям, усиливает и укрепляет их великий интерес к математике. Он так же отметил и особое увлечение способных учеников сложными математическими проблемами. З.П. Горельченко отмечает, что “подлинное увлечение серьезными математическими задачами характерно только для учеников, влюбленных в математику и проявляющих повышенные способности к успешным занятиям ею. Этим учащимся свойственно стремление попробовать свои силы прежде всего на содержательных задачах, которые решали многие математики и решение которых до сих пор не найдено“ (20, с.11). Таким образом, естественное влечение отдельных учащихся к наиболее трудным математическим задачам свидетельствует о склонности их к серьезной математической работе, о наличии у них способностей к успешным занятиям математикой. Отмечается и такая характерная особенность способных к математике учащихся, как переувлечение математической работой с невозможностью быстро выключиться из процесса математических размышлений. Как правило, для переключения на новую, не математическую работу увлеченным математикой учащимся требуется времени гораздо больше, чем ученикам, не отличающимся особой склонностью к такого рода занятиям. Одним из характерных признаков повышенных математических способностей учащихся и переходу их к зрелому математическому мышлению может считаться и относительно раннее понимание надобности аксиом как исходных истин при доказательствах. Доступное изучение аксиом и аксиоматического метода в значительной мере способствует ускорению развития дедуктивного мышления учащихся. Замечено также, что эстетическое чувство в математической работе у разных учащихся проявляется по-разному. По-разному различные ученики отвечают и на попытку воспитать и развить у них эстетическое чувство, соответствующее их математическому мышлению. Наиболее способных к математике учащихся отличает особый эстетический склад математического мышления. Он позволяет им сравнительно легко понимать некоторые теоретические тонкости в математике, улавливать безупречную логику и красоту математических рассуждений, фиксировать малейшую шероховатость, неточность в логическом строе математических концепций. Самостоятельное устойчивое стремление к оригинальному, нешаблонному, изящному решению математической задачи, к гармоническому единству формальных и семантических компонентов решения задачи, блестящие догадки, иногда опережающие логические алгоритмы, порою трудно переложимые на язык символов, свидетельствуют о наличии в мышлении чувства хорошо развитого математического предвидения, являющегося одной из сторон эстетического мышления в математике. Повышенные эстетические эмоции при математическом размышлении присущи в первую очередь учащимся с высоко развитыми математическими способностями и совместно с эстетическим складом математического мышления могут служить существенным признаком наличия математических способностей у школьников. Следует отметить и сравнительно большую скорость продвижения способных учащихся в овладении математическими знаниями и повышенную быстроту решения математических задач. Как правило, у наиболее способных к математической работе учащихся скорость восприятия и усвоения новых знаний повышенная. Считая это качество с большой вероятностью одним из необходимых, хотя и далеко не достаточным условием наличия математических способностей, следует рассматривать это условие, как компонент их структуры, причем такой, по которому наиболее легка первоначальная ориентация в обнаружении наиболее способных к математике учеников. И, наконец, выделяется такой компонент структуры математических способностей, как характерные особенности памяти учащихся способных к математике. Наиболее способные к математике в процессе математической работы ориентируют свое мышление прежде всего на хорошее понимание познаваемого и только затем на запоминание его. При этом они стремятся как можно глубже осознать, понять не только отдельные математические факты, но и основные идеи, связывающие их друг с другом и остальным усвоенным ранее математическим материалом, четко определить логическое место новых познаваемых фактов в общей системе определенных математических знаний.

Помимо указанных компонентов математических способностей, которые можно и должно развивать, необходимо учитывать еще и то, что успешность осуществления математической деятельности является производным определенного сочетания качеств:

Активного положительного отношения к математике, интереса к ней, стремления заниматься ею, переходящими на высоком уровне развития в страстную увлеченность.

Ряда характерологических черт; прежде всего трудолюбия, организованности, самостоятельности, целеустремленности, настойчивости, а также устойчивых интеллектуальных качеств, чувства удовлетворения от напряженной умственной работы, радость творчества, открытия и так далее.

Наличия во времени осуществления деятельности благоприятных для ее выполнения психических состояний, например, состояние заинтересованности, сосредоточенности, хорошего “психического” самочувствия и так далее.

Но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта. - Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике. - ...

Говоря о том, что некоторые виды технических средств обладают исключительно большими возможностями наглядного показа материала обучения. Олимпиада одна из основных форм организации внеклассной работы по математике. Термин «олимпиада» проявился давно, хотелось бы вспомнить об истории отечественной математической олимпиады. Сначала о ней говорили в единственном числе, поскольку она организовывалась...

Монету второй раз не бросают), в четвертом - второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при...

Наверняка вам встречались люди, которые как будто родились с логарифмической линейкой в руках. Насколько способности к математике предопределены природой?

У всех нас есть врождённое математическое чувство - именно оно позволяет нам грубо оценивать и сравнивать количество предметов, не прибегая к точному счёту. Именно с помощью этого чувства мы автоматически выбираем самую короткую очередь у кассы в супермаркете, не подсчитывая количество людей.

Но у некоторых людей математическое чувство развито лучше, чем у других. Несколько исследований, опубликованный в 2013 году, предполагают, что эта врождённая способность, являющаяся фундаментом для дальнейшего успешного изучения математической науки, может быть значительно развита с помощью практики и тренировок.

Исследователи обнаружили структурные особенности в мозге детей, которые наиболее успешно справлялись с математическими задачами. По словам психолога Элизабет Брэннон из Университета Дьюка, в итоге эти новые открытия могут помочь в поиске наиболее эффективных способов преподавания математики.

Как проводились исследования?

Можно ли развить математическое чувство?

Но врождённые способности вовсе не накладывают на нас ограничения. Брэннон и её коллега Джунку Парк привлекли 52 взрослых добровольцев к участию в небольшом эксперименте . В ходе эксперимента участники должны были решить несколько арифметических примеров с двузначными числами. Половина группы после этого прошла через 10 тренировочных сессий, в которых в уме оценивали количество точек на карточках. Контрольная группа такую серию испытаний не проходила. После этого обеим группам было предложено ещё раз решить арифметические примеры. Было обнаружено, что результаты участников, которые проходили тренировочные сессии, значительно превосходили результаты контрольной группы.

Эти два небольших исследования показывают, что врождённое математическое чувство и приобретаемые математические навыки неразрывно связаны между собой; работа над одним качеством неизбежно приведёт к совершенствованию и другого. Детские игры, направленные на тренировку математических способностей, действительно играют большую роль в последующем обучении математике.

Ещё одно опубликованное исследование помогает объяснить, почему одни дети обучаются лучше, чем другие. Учёные из Стэнфордского университета в течение 8 недель обучали 24 третьеклассников по специальной учебной программе с математическим уклоном. Уровень улучшения математических навыков этой группы детей колебался от 8% до 198% и не зависел от результатов тестов на интеллектуальное развитие, уровень памяти и когнитивных способностей.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники