Характеристика всех химических элементов по плану. Характеристика элемента по его положению в псхэ презентация к уроку по химии (9 класс) на тему. Нахождение углерода в природе

Вопрос 1.

А) Характеристика фосфора.

1. Фосфор - элемент пятой группы и третьего периода, Z = 15,

Соответственно, атом фосфора содержит в ядре 15 протонов, 16

Нейтронов и 15 электронов. Строение его электронной оболочки

Можно отразить с помощью следующей схемы:

15Р 2ё; 8ё; 5ё.

Атомы фосфора проявляют как окислительные свойства (принимают недостающие для завершения внешнего уровня три электрона, получая при этом степень окисления -3, например, в соединениях с менее электроотрицательными элементами - металлами, водородом и т. п.) так и восстановительные свойства (отдают 3 или 5 электронов более электроотрицательным элементам - кислороду, галогенам и т. п., приобретая при этом степени окисления +3 и+5.)

Фосфор менее сильный окислитель, чем азот, но более сильный, чем мышьяк, что связано с ростом радиусов атомов от азота к мышьяку. По этой же причине восстановительные свойства, наоборот, усиливаются.

2. Фосфор- простое вещество, типичный неметалл. Фосфору свойственно явление аллотропии. Например, существуют аллотропные модификации фосфора такие, как белый, красный и черный фосфор, которые обладают разными химическими и физическими свойствами. 3. Неметаллические свойства фосфора выражены слабее, чем у азота, но сильнее, чем у мышьяка (соседние элементы в группе).

4. Неметаллические свойства фосфора выражены сильнее, чем у кремния, но слабее, чем у серы (соседние элементы в периоде). 5. Высший оксид фосфора имеет формулу Р205. Это кислотный оксид. Он проявляет все типичные свойства кислотных оксидов. Так, например, при взаимодействии его с водой получается фосфорная кислота.

Р205 + ЗН20 =*2Н3Р04.

При взаимодействии его с основными оксидами и основаниями он дает соли.

Р205 + 3MgO = Mg3(P04)2; Р205 + 6КОН = 2К3Р04+ ЗН20.

6. Высший гидроксид фосфора - фосфорная кислота Н3Р04,

Раствор которой проявляет все типичные свойства кислот:

Взаимодействие с основаниями и основными оксидами:

Н3Р04 + 3NaOH = Na3P04 + ЗН20. 2Н3Р04 + ЗСаО = Ca3(P04)2i + ЗН20.

7. Фосфор образует летучее соединение Н3Р - фосфин.

Б) Характеристика калия.

1. Калий имеет порядковый номер 19, Z = 19 и относительную

Атомную массу А,(К) = 39. Соответственно заряд ядра его атома +19

(равен числу протонов). Следовательно, число нейтронов в ядре

Равно 20. Так как атом электронейтрален, то число электронов,

Элемент калий находится в четвертом периоде периодической системы, значит, все электроны располагаются на четырех энергетических уровнях. Таким образом, строение атома калия записывается так:

19К: 2ё; 8ё; 8ё; 1ё.

Исходя из строения атома, можно предсказать степень окисления калия в его соединениях. Так как в химических реакциях атом калия отдает один внешний электрон, проявляя восстановительные свойства, следовательно, он приобретает степень окисления +1.

Восстановительные свойства у калия выражены сильнее, чем у натрия, но слабее, чем у рубидия, что связано с ростом радиусов от Na к Rb.

2. Калий - простое вещество, для него характерна металлическая

Кристаллическая решетка и металлическая химическая связь, а

Отсюда - и все типичные для металлов свойства.

3. Металлические свойства у калия выражены сильнее, чем у натрия, но слабее, чем у рубидия, т. к. атом калия легче отдает электрон, чем атом натрия, но труднее, чем атом рубидия.

4. Металлические свойства у калия выражены сильнее, чем у кальция, т. к. один электрон атома калия легче оторвать, чем два электрона атома кальция.

5. Оксид калия КгО является основным оксидом и проявляет все типичные свойства основных оксидов. Взаимодействие с кислотами и кислотными оксидами.

К20 + 2НС1 = 2КС1+Н20; К20 + S03 = K2S04.

6. В качестве гидроксида калию соответствует основание (щелочь) КОН, которое проявляет все характерные свойства оснований: взаимодействие с кислотами и кислотными оксидами.

KOH+HNO3 = KN03+H20; 2KOH+N205 = 2KN03+H20.

7. Летучего водородного соединения калий не образует, а образует гидрид калия КН.

Вопрос 2.

А) MgO - основной оксид, S03 - кислотный оксид.

1) MgO + S03 = MgS04;

2) MgO + 2HNO3 = Mg(N03)2 + H20;

3) MgO + 2H+ = Mg + + H20; 2RbOH + S03 = Rb2S04 + H20; S03 + 20РГ = S04 ~ + H20.

Б) Mg(OH)2 - основной гидроксид, H2S04 - кислотный гидроксид.

1) Mg(OH)2 + H2S04 = MgS04 + 2H20; OH~ + H+ = H20;

2) Mg(OH)2 + S03 = MgS04 + H20; S03 + 20РГ = H20 + S04"; I) H2b04 + Na20 = Na2b04 + H20; Na20 + 2H = 2Na + H20.

Вопрос 3.

Магний - простое вещество, для него характерна металлическая кристаллическая решетка; он обладает металлическим блеском, электропроводностью.

A) 2Mg + 02 = 2MgO

6) Mg + Cl2 = MgCl2 Mg°-2e = Mg2+ 1

Вопрос 4.

Аллотропия - явление существования химического элемента в

Виде нескольких простых веществ, различных по строению и

Свойствам (так называемых аллотропных форм).

А) В молекулах состава S8 реализуется ковалентно-неполярный тип

Связи (т. е. не происходит смещения электронной пары, образующей

Б) В молекулах состава H2S реализуется ковалентно-полярный тип связи, т. к. происходит смещение электронной пары к более электроотрицательному атому - сере (S).

Н->S <- Н

Физические свойства ромбической серы (S8):

Вещество лимонно-желтого цвета, устойчивое до t = 95,6°С, растворяется в сероуглероде (CS2), анилине, бензоле, феноле. Уравнения реакций:

A) 2Na + S = Na2S

Восстановитель

Са°-2" =еСа2+

B)S2Al + 3l=Al2S3 А1°-Зё=А12

Е) S + 3F2 = SF6 6

1 - восстановитель 1 - окислитель

Восстановитель 1 - окислитель

1 - восстановитель 3 - окислитель

Вопрос 5.

Неметаллические свойства кремния выражены слабее, чем у фосфора, но сильнее, чем у алюминия.

Вопрос 6.

А) У азота кислотные свойства выражены сильнее, чем у фосфора,

Т. к. в группах сверху вниз происходит усиление основных и

Ослабление кислотных свойств.

Б) У серы кислотные свойства выражены сильнее, чем у фосфора,

Т. к. в периодах слева направо происходит усиление кислотных и

Ослабление основных свойств.

Вопрос 7. Дано : Ti(0 2) = 0,2; m(Mg) = 0,12г; Юм8(примеси) = 2 %. Найти : V (воздуха)

Р^ние : 1. Найдем массу магния без примеси: тчистый(Ме) = т(Ме) - т(Ме)-Юм0 (примеси); тчистый (Mg) =0,121-0,12г-0,02 = 0,1176г.

2. Запишем уравнение реакции сжигания магния. ОД 176 г.

2Mg + 02 = 2MgO,

У=2моль; у=1моль;

М = 24 г/моль; Vv = 22,4 л/моль;

Шуравнению реакции составим пропорцию: 48 г -22,4 л 0,1176 г -хл

Х = °"1176"22"4 = 0,05488 л. 48

Следовательно, 0,05488 л чистого кислорода требуется на сжигание

0,1176 г магния.

3. Найдем объем воздуха, который потребуется на сжигание магния:

У(воздуха) = X(°ll = 0,05488 = 0,2744 л.

Ответ : У(воздуха) = 0,2744 л.

Вопрос 8.

Дано : m(S) = 1.6 кг -1600 г.

Найти : V(S02)

Решение : 1. Запишем уравнение реакции сжигания серы в кислороде.

1 £(\(\ Г VTT

уметь характеризовать элемент на основании его положения в периодической системе, систематизировать знания о составе и свойствах соединений, образуемых металлами

Просмотр содержимого документа
«Урок 1 характеристика элемента-металла»

Конспект урока по химии

в 9 классе

«Характеристика химического элемента-металла на основании его положения в Периодической системе Д. И. Менделеева.»

Тема урока: Характеристика химического элемента-металла на основании его положения в Периодической системе Д. И. Менделеева. (1 слайд)

Цели урока: актуализировать знания о структуре периодической системы,

систематизировать знания о составе и строении атома элемента,

уметь характеризовать элемент на основании его положения в периодической системе, систематизировать знания о составе и свойствах соединений, образуемых металлами (2 слайд)

Оборудование: Таблица Д. И. Менделеева. Простые вещества - ме­таллы и неметаллы, компьютер, проектор, презентация по теме.

I . Организационный момент

Приветственное слово учителя. Поздравление ребят с началом нового учебного года.

П. Повторение основных теоретических вопросов программы 8 класса

Основным вопросом про­граммы 8 класса является Периодическая система химических элементов Д. И. Менделеева. Она же является базой для изучения курса химии 9 класса.

Напоминаю, что таблица Д. И. Менделеева представ­ляет собой «дом», в котором живут все химические элементы. Каждый элемент имеет номер (порядковый), который можно сравнить с номером квартиры. «Квартира» расположена на определенном «этаже» (т. е. периоде) и в определенном «подъезде» (т. е. группе). Каждая группа в свою очередь делится на подгруппы: главную и побочную. Пример: элемент магний Mg имеет порядковый номер (№) 12 и распо­ложен в третьем периоде, в главной подгруппе второй группы.

Свойства химического эле­мента зависят от его положения в таблице Д. И. Менделеева. Поэтому очень важно научиться характеризовать свойства химических элементов на основании их положения в Периодической системе.

III . План характеристики химического элемента на основании его положения в Периодической системе Д. И. Менделеева

Алгоритм характеристики: (3-5 слайды)

1. Положение элемента в ПС

в) группа

д) относительная атомная масса.

а) число протонов (р +), нейтронов (n 0), электронов (е -)

б) заряд ядра

д) электронная формула атома

е) графическая формула атома

ж) семейство элемента.

Три последних пункта, для хорошо подготовленных классов.

3. Свойства атома

Записать в виде схем-уравнений. Сравнить с соседними атомами.

4. Возможные степени окисления.

5. Формула высшего оксида, его характер.

6. Формула высшего гидроксида, его характер.

7. Формула летучего водородного соединения, его характер.

Обратить внимание: При рассмотрении пунктов 5 и 7 все формулы высших оксидов и летучих водородных соединений помещены внизу таблицы Д. И. Менделеева, что фактически является «законной шпаргалкой».

Так как в начале, при характеристике элементов ребята могут испытывать определенные трудности, поэтому им полезно пользовать­ся «законными шпаргалками» - табл. 1 и др. Потом, по мере накопления опыта и знаний, эти помощники уже не потребуются.

Задание: Охарактеризуйте химический элемент натрий на основании его положения в периодической системе Д.И. Менделеева. (слайд 6)

Работает весь класс, записи поочередно ведут обучающиеся на доске.

Образец ответа. (слайд 7)

Na – натрий

1) 11, 3 период, малый, 1 группа, А

2) 11 р + , 12n 0 , 11 е -

+ 11 2-8-1

1s 2 2s 2 2p 6 3s 1 3p 0 3d 0 - s - элемент

3) Na 0 – 1 e Na +

восстановитель

R a: Li Mg

по группе по периоду

Ме св-ва: Li Na K Na Mg

по группе по периоду

4) Na : 0, +1

5) Na 2 O – основный оксид

6) NaOH – основание, щелочь.

7) Не образует

IV

Каждый химический элемент образует простое вещество, обладающее определенным строением и свойствами. Простое вещество характеризуют по следующим параметрам: (слайд 8)

1) Тип связи.

2) Тип кристаллической решетки.

3) Физические свойства.

4) Химические свойства (схема).

Образец ответа : (слайд 9)

Металлическая связь [Na 0 – 1 e Na + ]

- Металлическая кристаллическая решетка

- Твердое вещество, мягкий металл (режется ножом), белого цвета, блестящий, тепло-и электропроводен.

Металл продемонстрировать. Отметить, что в связи с высокой химической активностью, его хранят под слоем керосина.

- Na 0 – 1 e Na + → взаимодействует с веществами-окислителями

восстановитель

Неметаллы + оксиды металлов (менее активные)

Кислоты + соли

Задание : Запишите уравнения реакций, характеризующие свойства простого вещества натрия. Рассмотрите уравнения с позиций окислительно-восстановительных процессов. (слайд 10)

Пять учащихся по желанию работают у доски.

1) 2 Na + Cl 2 → 2 NaCl

Cl 2 0 + 2e → 2Cl - │1 окислитель - восстановление

2) 2 Na + 2HCl → 2 NaCl + H 2

Na 0 – 1e → Na + │2 восстановитель - окисление

3) 2 Na + 2H 2 O → 2 NaOH + H 2

Na 0 – 1e → Na + │2 восстановитель - окисление

2H + + 2e → H 2 0 │1 окислитель - восстановление

4) 2 Na + MgO → Na 2 O + Mg

Na 0 – 1e → Na + │2 восстановитель - окисление

Mg 2+ + 2e → Mg 0 │1 окислитель - восстановление

5) 2 Na + CuCl 2 (расплав) → 2 NaCl + Cu

Na 0 – 1e → Na + │2 восстановитель - окисление

Cu 2+ + 2e → Cu 0 │1 окислитель - восстановление

V

Для каждого химического элемента характерно образование сложных веществ различных классов – оксиды, основания, кислоты, соли. Основными параметрами характеристики сложного вещества являются: (слайд 11)

Формула соединения.

Вид связи.

Характер соединения.

Химические свойства соединения (схема).

Образец ответа:

I . Оксид (слайд 12)

    Na 2 O

    Ионная связь

    Химические свойства:

    основный оксид + кислота → соль и вода

    основный оксид + кислотный оксид → соль

    основный оксид + Н 2 О → щелочь

(растворимый оксид)

II. Гидроксид (слайд 13)

1) NaOH

2) Ионная связь

3) Основание, щелочь.

4) Химические свойства:

основание (любое) + кислота = соль + вода

щёлочь + соль = новое основание + новая соль

щёлочь + оксид неметалла = соль + вода

Самостоятельная работа.

Задание: Запишите уравнения реакций, характеризующие свойства оксида и гидроксида. Уравнения рассмотрите с позиций окислительно-восстановительных процессов и ионного обмена. (слайд 14)

Образец ответов.

Оксид натрия:

l ) Na 2 O + 2HC 1 = 2NaCl + Н 2 О (реакция обмена)

2) Na 2 O + SO 2 = Na 2 SO 3 (реакция соединения)

3) Na 2 O + H 2 O = 2NaOH (реакция соединения)

Гидроксид натрия:

1) 2NaOH + H 2 SO 4 = Na 2 SO 4 + 2Н 2 О (реакция обмена)

2Na + + 2ОН - + 2Н + + SO 4 2- = 2Na + + SO 4 2- + 2Н 2 О

ОН - + Н + = Н 2 О

2) 2NaOH + СО 2 = Na 2 CO 3 + Н 2 О (реакция обмена)

2Na + + 2ОН- + СО 2 = 2Na + + СО 3 2- + Н 2 О

3) 2NaOH + CuSO 4 = Na 2 SO 4 + Cu (OH) 2 (реакцияобмена)

2Na + + 2 ОН - + Cu 2+ + SO 4 2- = 2Na + + SO 4 2- + Cu (OH) 2

2OH - + Cu 2+ = Cu (OH ) 2

Вспомнить условия протекания реакций обмена до конца (образова­ние осадка, газа или слабого электролита).

Для натрия, как и для всех металлов, характерно образование генетического ряда: (слайд 15)

Металл → основный оксид → основание (щелочь) → соль

Na → Na 2 O → NaOH → NaCl (Na 2 SO 4 , NaNO 3 , Na 3 PO 4 )

(слайд 16)

§ 1, упр. 1 (б), 3; составить уравнения реакций для генетического ряда Na

Просмотр содержимого презентации
«Характеристика элемента-металла»

Урок: «Характеристика химического элемента-металла на основании его положения в Периодической системе Д. И. Менделеева» урок химии, 9 класс


  • актуализировать знания о структуре периодической системы,
  • систематизировать знания о составе и строении атома элемента,
  • уметь характеризовать элемент на основании его положения в периодической системе,
  • систематизировать знания о составе и свойствах соединений, образуемых металлами

Алгоритм

характеристики элемента

  • Положение элемента в ПС

а) порядковый номер химического элемента

б) период (большой или малый).

в) группа

г) подгруппа (главная или побочная)

д) относительная атомная масса


а) число протонов (р+), нейтронов (n 0), электронов (е -)

б) заряд ядра

в) число энергетических уровней в атоме

г) число электронов на уровнях

д) электронная формула атома

е) графическая формула атома

ж) семейство элемента.


  • Свойства атома

а) способность отдавать электроны (восстановитель)

б) способность принимать электроны (окислитель).

  • Возможные степени окисления.
  • Формула высшего оксида, его характер.
  • Формула высшего гидроксида, его характер.
  • Формула летучего водородного соединения, его характер.

Задание: Охарактеризуйте химический элемент натрий на основании его положения в периодической системе Д.И. Менделеева.


Mg по группе по периоду Ме св-ва: Li Na K Na Mg по группе по периоду Na: 0, +1 Na 2 O – основный оксид NaOH – основание, щелочь. Не образует" width="640"
  • Na – натрий
  • 11, 3 период, малый, 1 группа, А
  • 11 р +, 12n 0 , 11 е -
  • +11 2-8-1
  • 1s 2 2s 2 2p 6 3s 1 3p 0 3d 0 - s - элемент
  • Na 0 – 1 e Na +
  • восстановитель
  • Ra: Li Na Mg
  • по группе по периоду
  • Ме св-ва: Li Na K Na Mg
  • по группе по периоду
  • Na : 0, +1
  • Na 2 O – основный оксид
  • NaOH – основание, щелочь.
  • Не образует

  • Тип связи
  • Тип кристаллической решетки
  • Физические свойства
  • Химические свойства (схема)

Образец ответа

  • Металлическая связь [ Na 0 – 1 e → Na + ]
  • Металлическая кристаллическая решетка
  • Твердое вещество, мягкий металл (режется ножом), белого цвета, блестящий, тепло - и электропроводен.
  • Na – восстановитель → взаимодействует с веществами-окислителями

Неметаллы + кислоты

Вода + соли

Оксиды металлов (менее активные)


Задание : Запишите уравнения реакций, характеризующие свойства простого вещества натрия.

Рассмотрите уравнения с позиций окислительно-восстановительных процессов.


  • Формула соединения.
  • Вид связи.
  • Характер соединения.
  • Химические свойства соединения (схема)

Образец ответа: Оксид натрия

  • Na 2 O
  • Ионная связь
  • Солеобразующий, основный оксид.
  • Химические свойства:

Основный оксид + кислота → соль и вода

Основный оксид + кислотный оксид → соль

Основный оксид + Н 2 О → щелочь

(растворимый оксид)


Гидроксид натрия

  • Ионная связь
  • Основание, щелочь.
  • Химические свойства:

Щёлочь + кислота = соль + вода

Щёлочь + соль = новое основание + новая соль

Щёлочь + оксид неметалла = соль + вода


Самостоятельная работа

Задание: Запишите уравнения реакций, характеризующие свойства оксида и гидроксида.

Уравнения рассмотрите с позиций окислительно-восстановительных процессов и ионного обмена.


Генетический ряд натрия

Металл → Основный оксид →

→ Основание (щелочь) → Соль

Na Na 2 O NaOH NaCl ( Na 2 SO 4 , NaNO 3 , Na 3 PO 4 )


  • упр. 1 (б), 3
  • составьте уравнения реакций для генетического ряда Na .

Цель работы: научиться даватьхарактеристику химическим элементам на основе их положения в Периодической системе Д.И. Менделеева по определенному плану.

Пояснения к работе :

Периодическая система Менделеева является естественной классификацией хим.элементов по электронной структуре их атомов. Об электронной структуре атома, а значит, и свойствах элемента судят по положению элемента в соответствующем периоде и подгруппе пер системы. Закономерностями заполнения эл.уровней объясняется различное число элементов в периодах. Строгая периодичность расположения элементов в пер системе хим.элементов Менделеева полностью объясняется последовательным характером заполнения энергетических уровней. Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание положительных зарядов атомных ядер от 1 до 107 обусловливает периодическое повторение строения внешнего энергетического уровня. А поскольку свойства элементов в основном зависят от числа электронов на внешнем уровне, то и они периодически повторяются. В этом - физический смысл периодического закона. В малых периодах с ростом положительного заряда ядер атомов возраст число электронов на внешнем уровне (от 1 до 2-в первом периоде, и от 1 до 8-во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются свойства неметалл. В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1.Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических. В свете учения о строении атомов становится обоснованным разделение Д.И. Менделеевым всех элементов на 7 периодов. Номер периода соответствует числу энергетических уровней атомов, заполняемых электронами. Поэтому s-элементы имеются во всех периодах, р-элементы - во втором и последующих, d-элементы - в четвертом и последующих и f-элементы - в шестом и седьмом периодах. Легко объяснимо и деление групп на подгруппы, основанное на различии в заполнении электронами энергетических уровней. У элементов главных подгрупп заполняются или s-подуровни (это s-элементы), или р-подуровни (это р-элементы) внешних уровней. У элементов побочных подгрупп заполняется (d-подуровень второго снаружи уровня (это d-элементы).У лантаноидов и актиноидов заполняются соответственно 4f- и 5f-подуровни (это f-элементы).Таким образом, в каждой подгруппе объединены элементы, атомы которых имеют сходное строение внешнего электронного уровня. При этом атомы элементов главных подгрупп содержат на внешних уровнях число электронов, равное номеру группы. В побочные же подгруппы входят элементы, атомы которых имеют на внешнем уровне по два или по одному электрону. Различия в строении обусловливают и различия в свойствах элементов разных подгрупп одной группы. Так, на внешнем уровне атомов элементов подгруппы галогенов имеется по семь электронов подгруппы марганца - по два электрона. Первые - типичные металлы, а вторые- металлы. Но у элементов этих подгрупп есть и общие свойства: вступая в химические реакции, все они (за исключением фтора F)могут отдавать по 7 электронов на образование химических связей. При этом атомы подгруппы марганца отдают 2 электрона с внешнего и 5 электронов со следующего за ним уровня. Таким образом, у элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вторых снаружи) уровней, в чем состоит основное различие в свойствах элементов главных и побочных подгрупп. Отсюда же следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом - физический смысл номера группы. Итак, строение атомов обусловливает две закономерности: 1) изменение свойств элементов по горизонтали - в периоде слева право ослабляются металлические и усиливаются неметаллические свойства;2) изменение свойств элементов по вертикали - в подгруппе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические. В таком случае элемент (и клетка системы) находится на пересечении горизонтали и вертикали, что определяет его свойства. Это помогает находить и писывать свойства элементов, изотопы которых получают искусственным путем. По числу энергетических уровней в электронной оболочке атома элементы делятся на семь периодов.


Первый период состоит из атомов, в которых электронная оболочка состоит из одного энергетического уровня, во втором периоде - из двух, в третьем - из трех, в четвертом - из четырех и т. д. Каждый новый период начинается тогда, когда начинает заполняться новый энергетический уровень. В периодической системе каждый период начинается элементами, атомы которых на внешнем уровне имеют один электрон, - атомами щелочных металлов - и заканчивается элементами, атомы которых на внешнем Уровне имеют 2 (в первом периоде) или 8 электронов (во всех последующих)-атомами благородных газов. Внешние электронные оболочки сходны у атомов элементов (Li, Na, К, Rb, Cs); (Ве, Mg, Са, Sr); (F, Сl, Вг, I); (Не, Nе, Аг, Kr, Хе) и т. д. Именно поэтому каждая из вышеприведенных групп элементов оказывается в определенной главной подгруппе периодической таблицы: Li, Na, К, Rb, Cs в I группе, F, Сl, Вг, I - в VII и т. д. Именно вследствие сходства строения электронных оболочек атомов сходны их физические и химические свойства. Число главных подгрупп определяется максимальным числом элементов на энергетическом уровне и равно 8. Число переходных элементов (элементов побочных подгрупп) определяется максимальным числом электронов на d-подуровне и равно 10 в каждом из больших периодов. Поскольку в периодической системе химических элементов Менделеева одна из побочных подгрупп содержит сразу три переходных элемента, близких по химическим свойствам (так называемые триады Fe-Со-Ni, Ru-Rh-Pd, Os-Ir-Pt), то число побочных подгрупп, так же как и главных, равно 8.По аналогии с переходными элементами число лантаноидов и актиноидов, вынесенных внизу периодической системы в виде самостоятельных рядов, равно максимальному числу электронов на f-подуровне, т. е. 14. Период начинается элементом, в атоме которого на внешнем уровне находится один s-электрон: в первом периоде это водород, в остальных-щелочные металлы. Завершается период благородным газом: первый-гелием (1s2), остальные периоды - элементами, атомы которых на внешнем уровне имеют электронную конфигурацию ns2np6. Первый период содержит два элемента: водород (Z=1) и гелий (Z= 2). Второй период начинается элементом литием (Z= 3) и завершается неоном (Z = 10). Во втором периоде восемь элементов. Третий период начинается с натрия (Z= 11), электронная конфигурация которого 1s22s22p63s1. С него началось заполнение третьего энергетического уровня. Завершается оно у инертного газа аргона (Z = 18), Зs- и 3p-подуровни которого полностью заполнены. Электронная формула аргона: 1s22s22p6Зs23p6. Натрий - аналог лития, аргон неона. В третьем периоде, как и во втором, восемь элементов. Четвертый период начинается калием (Z= 19), электронное строение которого выражается формулой 1s22s22p63s23p64s1. Его 19-й электрон занял 4s-подуровень, энергия которого ниже энергии Зd-подуровня. Внешний 4s-электрон придает элементу свойства, сходные со свойствами натрия. У кальция (Z = 20) 4s-подуро-вень заполнен двумя электронами: 1s22s22p63s23р64s2. С элемента скандия (Z = 21) начинается заполнение Зd-подуровня, так как он энергетически более выгоден, чем 4р-подуровень. Пять орбиталей 3d-подуровня могут быть заняты десятью электронами, что осуществляется у атомов от скандия до цинка (Z = 30). Поэтому электронное строение Sc соответствует формуле 1s22s22p63s23p63d14s2, а цинка - 1s22s22p63s23p63d104s2. В атомах последующих элементов вплоть до инертного газа криптона (Z=36) идет заполнение 4p-подуровня. В четвертом периоде 18 элементов. Пятый период содержит элементы от рубидия (Z=37) до инертного газа ксенона (Z = 54).Заполнение их энергетических уровней идет так же, как у элементов четвертого периода: после Rb и Sr у десяти элементов от иттрия (Z = 39) до кадмия (Z=48) заполняется 4d-подуровень, после чего электроны занимают 5p-подуровень. В пятом периоде как и в четвертом, 18 элементов. В атомах элементов шестого периода цезия (Z= 55) и бария (Z = 56) заполняется 6s-подуровень. У лантана (Z= 57) один электрон поступает на 5d-подуровень, после чего заполнение этого подуровня приостанавливается, а начинает заполняться 4f-поАуровень, семь орбиталей которого могут быть заняты 14 электронами. Это происходит у атомов элементов лантаноидов с Z = 58 - 71. Поскольку у этих элементов заполняется глубинный 4f-подуровеиь третьего снаружи уровня, они обладают весьма близкими химическими свойствами. С гафния (Z = 72) возобновляется заполнение d-подуровня и заканчивается у ртути (Z = 80), после чего электроны заполняют 6p-подуровень. Заполнение уровня завершается у благородного газа радона (Z= 86). В шестом периоде 32 элемента. Седьмой период - незавершенный. Заполнение электронами электронных уровней аналогично шестому периоду. После заполнения 7s-подуровня у Франция (Z = 87) и радия (Z = 88) электрон актиния поступает на 6d-подуровень, после которого начинает заполняться 5f-подуровень 14 электронами. Это происходит у атомов элементов актиноидов с Z = 90 - 103. После 103-го элемента идет заполнение б d-подуровня: у курчатовия (Z = 104), нильсбория (Z =105), элементов Z = 106 и Z = 107. Актиноиды, как и лантаноиды, обладают многими сходными химическими свойствами. Хотя 3 d-подуровень заполняется после 4s-подуровня, в формуле он ставится раньше, так как последовательно записываются все подуровни данного уровня. В зависимости от того, какой подуровень последним заполняется электронами, все элементы делят на четыре типа (семейства). 1. s-Элементы: заполняется электронами s-подуровень внешнего уровня. К ним относятся первые два элемента каждого периода. 2. р-элементы: заполняется электронами р-подуровень внешнего уровня. Это последние 6 элементов каждого периода (кроме первого и седьмого). 3. d-Элементы: заполняется электронами d-подуровень второго снаружи уровня, а на внешнем уровне остается один или два эле трона (у Pd - нуль). К ним относятся элементы вставных декад больших периодов, расположенных между s- и р-элементами (их также называют переходными элементами). 4. f-Элементы: заполняется электронами f-подуровень третьего снаружи уровня, а на внешнем уровне остается два электрона. Это лантаноиды и актиноиды. В периодической системе s-элементов 14, р-элементов 30, d-элементов 35, f-элементов 28. Элементы одного типа имеют ряд общих химических свойств.

Рассмотрим характеристику химического элемента-металла по его положению в периодической системе на примере лития.

Литий ― это элемент 2 периода главной подгруппы I группы периодической системы Д. И. Менделеева, элемент IA или подгруппы щелочных металлов.

Строение атома лития можно отразить так: 3Li ― 2ē, 1ē. Атомы лития будут проявлять сильные восстановительные свойства: легко отдадут свой единственный внешний электрон и получат в результате степень окисления (с. о.) +1. Эти свойства атомов лития будут слабее выражены, чем у атомов натрия, что связано с увеличением радиусов атомов: Rат (Li) < Rат (Na). Восстановительные свойства атомов лития выражены сильнее, чем у бериллия, что связано и с числом внешних электронов, и с расстоянием от ядра до внешнего уровня.

Литий ― простое вещество, представляет собой металл, а, следовательно, имеет металлическую кристаллическую решетку и металлическую химическую связь. Заряд иона лития: не Li+1 (так указывают с. о.), а Li+. Общие физические свойства металлов, вытекающие из их кристаллического строения: электро- и теплопроводность, ковкость, пластичность, металлический блеск и т. д.

Литий образует оксид с формулой Li2O ― это солеобразующий, основной оксид. Это соединение образовано за счет ионной химической связи Li2+O2-, взаимодействуют с водой, образуя щелочь.

Гидроксид лития имеет формулу LiOH. Это основание ― щелочь. Химические свойства: взаимодействие с кислотами, кислотными оксидами и солями.

В подгруппе щелочных металлов отсутствует общая формула "Летучие водородные соединения". Эти металлы не образуют летучих водородных соединений. Соединения металлов с водородом ― бинарные соединения ионного типа с формулой M+H-.

Характеристика химических элементов на основании их положения в Периодической системе

Отчет по практической работе 4.

Студент______________________________________________________________________

Группа_______

Цель работы:

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. элемента:_____________________________________________________

2. Положение в Периодической системе:

2.1. № элемента____

2.2. № периода____

2.3. № группы____

2.4. Подгруппа____

3. Состав атома:

3.1. Заряд ядра_____

3.2. Число протонов в ядре____

3.3. Число нейтронов в ядре____

3.4. Общее число электронов в электронной оболочке_____

3.5. Число Энергетических Уровней_____

3.6. Число валентных электронов _____

3.7. Число электронов на внешнем Энергетическом Уровне_____

4. Распределение электронов по Энергетическим Уровням:

4.1. Графическая схема:

4.2. Электронная формула:________________________________________

5. Валентные возможности:_______________

6. Класс химического элемента:______________

7. Класс простого вещества:________________

8. Формулы и характер высшего оксида и гидроксида:

8.1. Оксид:___________________________________

8.2. Гидроксид:_________________________________


Закономерности изменения некоторых свойств химических элементов в ПС. ХарактеристикаВ пределах периодаВ пределах одной группы (для элементов главных подгрупп) Заряд ядра атома Увеличивается Число энергетических уровней Не изменяется Увеличивается Число электронов на внешнем энергетическом уровне Увеличивается Не изменяется Радиус атома Уменьшается Увеличивается Электроотрицательность УвеличиваетсяУменьшается Восстановительные свойства Уменьшаются Увеличиваются Металлические свойства Уменьшаются Увеличиваются


Натрий Хлор Заряд ядра Число нуклоновp=11, n=12p=17,n=18 Число электроновe=11E=17 Число энергетических уровней 33 Электронная формула 1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6 3s 2 3p 5 Высшая степень окисления+1+7 Окислительно-восстановительные свойства Восстановитель Окислитель 1. Положение элемента в ПС и строение его атома








Натрий Хлор Оксид натрия Na2O проявляет основные свойства. Ему соответствует основание NaOH. Na 2 O + H 2 O = 2NaOH Na 2 O + 2HCl = 2NaCl + H 2 O Na 2 O + SO 3 = Na 2 SO 4 Высший оксид хлора Cl2O7 является кислотным оксидом. Ему соответствует кислота HClO4. Cl 2 O 7 + H 2 O = 2HClO 4 Cl 2 O 7 + Na 2 O = 2NaClO 4 Cl 2 O 7 + 2NaOH = 2NaClO 4 + H 2 O


Натрий Хлор Гидроксид натрия NaOH, является сильным основанием и проявляет свойства, характерные для основания. NaOH + HCl = NaCl + H2O 2NaOH + CO2 = Na2CO3 + H2O 2NaOH + CuCl2 = Cu(OH)2 + 2NaCl Хлорная кислота HClO4 проявляет свойства сильной кислоты. HClO2 + KOH = KClO4 + H2O




(от др.-греч. αλλος «другой», τροπος «поворот, свойство») существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам так называемых аллотропических модификаций или аллотропических форм.др.-греч.химического элемента простых веществ

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .


При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники