Геометрическое изображение золотой пропорции. Как работает золотое сечение

20.05.2017

Золотое сечение – это то, о чем должен знать каждый дизайнер. Мы объясним, что это такое, и как вы можете его использовать.

Существует общее математическое соотношение, найденное в природе, которое может быть использовано в дизайне для создания приятных, натурально-выглядящих композиций. Его называют Золотым Сечением или греческой буквой “фи”. Если вы иллюстратор, арт директор или графический дизайнер, вам определенно стоит использовать Золотое Сечение в каждом проекте.

В этой статье мы объясним, как его использовать, а также поделимся несколькими отличными инструментами для дальнейшего вдохновения и изучения.

Тесно связанная с Последовательностью Фибоначи (Fibonacci Sequence), которую вы, возможно, помните из уроков математики или романа Дэна Брауна “Код Да Винчи”, Золотое Сечение описывает идеально симметричное взаимоотношение между двумя пропорциями.

Приблизительно равное соотношению 1: 1.61, Золотое Сечение может быть иллюститровано как Золотой Прямоугольник: большой прямоугольник, включающий квадрат (в котором стороны равны длине самой короткой стороны прямоугольника) и прямоугольник поменьше.

Если убрать квадрат из прямоугольника, останется другой, маленький Золотой Прямоугольник. Этот процесс может продолжаться до бесконечности, как и цифры Фибоначи, которые работают в обратном порядке. (Добавление квадрата со сторонами, равными длине самой длинной стороны прямоугольника, приближает вас к Золотому Прямоугольнику и Золотому Сечению.)

Золотое Сечение в действии

Считается, что Золотое Сечение используется уже около 4000 лет в искусстве и дизайне. Однако, многие люди соглашаются, что при строительстве Египетских Пирамид также использовался этот принцип.

В более современные времена это правило может быть замечено в музыке, искусстве и дизайне вокруг нас. Применяя аналогичную рабочую методологию, вы можете привнести в свою работу те же особенности дизайна. Давайте взглянем на несколько вдохновляющих примеров.

Греческая архитектура

В древнегреческой архитектуре Золотое Сечение использовалось для определения приятных пространственных отношений между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих структуру.

В результате получается идеально пропорциональное строение. Движение неоклассической архитектуры также использовало эти принципы.

Тайная вечеря

Леонардо Да Винчи, как и многие другие художники прошлых лет, часто использовал Золотое Сечение для создания приятных композиций.

В Тайной вечере фигуры расположены в нижних двух третях (самая большая из двух частей Золотого Сечения), а Иисус идеально зарисован между золотых прямоугольников.

Золотое сечение в природе

Существует множество примеров Золотого Сечения в природе – их вы можете обнаружить вокруг себя. Цветы, морские раковины, ананасы и даже пчелиные соты демонстрируют одинаковое соотношение.

Как рассчитать Золотое Сечение

Рассчет Золотого Сечения достаточно прост, и начинается с простого квадрата:

01. Нарисуйте квадрат

Он образует длину короткой стороны прямоугольника.

02. Разделите квадрат

Разделите квадрат пополам с помощью вертикальной линии, образуя два прямоугольника.

03. Проведите диагональ

В одном из прямоугольников проведиде линию из одного угла в противоположный.

04. Поверните

Поверните эту линию так, чтобы она легла горизонтально по отношению к первому прямоугольнику.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и первый прямоугольник.

Как использовать Золотое Сечение

Использовать этот принцип проще, чем вы думаете. Существует пара быстрых трюков, которые вы можете использовать в своих макетах, или потратить немного больше времени и полностью раскрыть концепт.

Быстрый способ

Если вы когда-нибудь сталкивались с “Правилом третей”, то вам будет знакома идея разделения пространства на равные трети по вертикали и горизонтали, при этом места пересечения линий создают естественные точки для объектов.

Фотограф размещает ключевой объект на одной из этих пересекающихся линий, чтобы создать приятную композицию. Этот прицип может также использоваться в вашей разметке страниц и дизайне постеров.

Правило третей можно применять к любой форме, но если вы примените его к прямоугольнику с пропорциями примерно 1: 1.6, вы окажетесь очень близко к золотому прямоугольнику, что сделает композицию более приятной для глаз.

Полная реализация

Если вы хотите реализовать Золотое Сечение в вашем дизайне в полной мере, то просто расположите основной контент и сайдбар (в веб дизайне) в соотношении равном 1: 1.61.

Можно округлить значения в меньшую или большую стороны: если контент-зона равна 640px, а сайдбар 400px, то эта разметка вполне подойдет под Золотое Сечение.

Разумеется, вы также можете разделить области контента и боковой панели на одно и то же отношение, а связь между заголовком веб-страницы, областью содержимого, футером и навигацией также может быть спроектирована с использованием того же приципа.

Полезные инструменты

Вот несколько инструментов, которые помогут вам в использовании Золотого Сечения в дизайне и создании пропорциональных проектов.

GoldenRATIO – это приложение для создания дизайна веб сайтов, интерфейсов и шаблонов, подходящих под Золотое Сечение. Доступно в Mac App Store за 2,99$. Включает визуальный калькулятор Золотого Сечения.

Так же в приложении есть функция “Избранное”, которое сохраняет настройки для повторяющихся задач и “Click-thru” мод, позволяющий сворачивать приложение в Photoshop.

Этот калькулятор Золотого Сечения от Pearsonified помогает в создании идеальной типографики для вашего сайта. Введите размер шрифта, ширину контейнера в поле, и нажмите кнопку Set my type! Если вам нужно оптимизировать количество букв в строчке, вы можете дополнительно ввести значение CPL.

Это простое, полезное и бесплатное приложение доступно для Mac и PC. Введите любое число, и приложение вычислит вторую цифру в соответствии с приципом Золотого Сечения.

Это приложение позволяет проектировать с золотыми пропорциями, экономя кучу времени на вычислениях.

Вы можете менять формы и размеры, фокусируясь на работе над своим проектом. Постоянная лицензия стоит 49$, но вы можете скачать бесплатную версию на месяц.

Обучение Золтому Сечению

Вот несколько полезных туториалов по Золотому Сечению (английский язык):

В этом туториале для Digital Arts Роберто Маррас (Roberto Marras) показывает, как использовать Золотое Сечение в художественной работе.

Туториал от Tuts+, рассказывающий, как использовать золотые принципы в веб дизайн проектах.

Туториал от Smashing Magazine, рассказывающий о пропорциях и правиле третей.

Вырезав квадрат со стороной а из прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же свойством

Золото́е сече́ние (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление, число Фидия) — деление непрерывной величины на части в таком отношении, при котором большая часть так относится к меньшей, как вся величина к большей. Например, деление отрезка АС на две части таким образом, что большая его часть АВ относится к меньшей ВС так, как весь отрезок АС относится к АВ (т. е. |АВ | / |ВС | = |АС | / |АВ |).

Эту пропорцию принято обозначать греческой буквой ϕ (встречается также обозначение τ). Она равна:

Формула «золотых гармоний», дающая пары чисел удовлетворяющие вышеупомянутой пропорции:

В случае с числом параметр m = 1.

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος ) впервые встречается в «Началах» Евклида (ок . 300 до н. э.), где оно применяется для построения правильного пятиугольника.

C ам термин «золотое сечение» (нем. goldener Schnitt ) был введён немецким математиком Мартином Омом в 1835 году.

Математические свойства

Золотое сечение в пятиконечной звезде

иррациональное алгебраическое число, положительное решение любого из следующих уравнений

представляется цепной дробью

для которой подходящими дробями являются отношения последовательных чисел Фибоначчи . Таким образом, .

В правильной пятиконечной звезде каждый сегмент делится пересекающим его сегментом в золотом сечении (то есть отношение синего отрезка к зелёному, также как красного к синему, также как зелёного к фиолетовому, равны ).

Построение золотого сечения

Вот ещё одно представление:

Геометрическое построение

Золотое сечение отрезка AB можно построить следующим образом: в точке B восстанавливается перпендикуляр к AB , откладывают на нём отрезок BC , равный половине AB , на отрезке AC откладывают отрезок AD , равный AC CB , и наконец, на отрезке AB откладывают отрезок AE , равный AD . Тогда

Золотое сечение и гармония

Принято считать, что объекты, содержащие в себе «золотое сечение», воспринимаются людьми как наиболее гармоничные. Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании. Архитектор Ле Корбюзье «нашёл», что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса , пропорции фигур соответствуют величинам золотого сечения. Зодчий Хесира , изображённый на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления, и т. д. и т. п.

"Золотое сечение" в искусстве

Золотое сечение и зрительные центры

Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения».

Известно, что Сергей Эйзенштейн искусственно построил фильм Броненосец Потёмкин по правилам «золотого сечения». Он разбил ленту на пять частей. В первых трёх действие разворачивается на корабле. В двух последних — в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.

Другим примером использования правила «Золотого сечения» в киноискусстве — расположение основных компонентов кадра в особых точках — «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

Следует заметить что в вышеописанных примерах фигурировало приблизительное значение "золотого сечения": легко убедиться что ни 3/2 ни 5/3 не равно значению золотого сечения.

Российский зодчий Жолтовский также использовал золотое сечение.

Критика золотого сечения

Есть мнения, что значимость золотого сечения в искусстве, архитектуре и в природе преувеличена и основывается на ошибочных расчётах.

При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2 : 3), размеры кино- и телевизионных экранов — например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми».


Число прочтений: 7967

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог “Тимей” посвящен математическим и эстетическим воззрениям школы Пифагора, в частности, вопросам золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в “Началах” Евклида. Во 2-й книге “Начал” дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам “Начал” Евклида переводчик Дж. Кампано из Наварры (III в.). Секреты золотого деления ревностно оберегались, хранились в строгой тайне, они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась “О перспективе в живописи”. Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1509 г. в Венеции была издана книга Луки Пачоли “Божественная пропорция” с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее “божественную суть” как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. “Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать”. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений отводил золотому сечению. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоганн Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение). Кеплер называл золотую пропорцию продолжающей саму себя “Устроена она так, - писал он, - что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности”.

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы “вместе с водой выплеснули и ребенка”. Вновь “открыто” золотое сечение было в середине XIX века. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд “Эстетические исследования”. Цейзинг рассматривает золотое сечение без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях “математической эстетикой”.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название “Золотое деление как основной морфологический закон в природе и искусстве”. В 1876 г. в России была издана небольшая книжка, с изложением этого труда Цейзинга.

В конце XIX - начале XX вв. появилось немало чисто формалистических теорий о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Наука не поглотила искусство, но в те исторические периоды, когда математика и искусство сближались, это давало импульс к развитию того и другого.

Понятие золотого сечения

Выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи "Мона Лиза", подсолнухом, улиткой, снежинкой, галактикой и пальцами человека?

В математике пропорцией (лат. proportio) называют равенство двух отношений: a: b = c: d.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей.

Отрезок прямой АВ можно разделить на две части точкой С следующими способами:

  • на две равные части - АВ: АС = АВ: ВС;
  • на две неравные части в любом отношении (такие части пропорции не образуют);
  • в крайнем и среднем отношении таким образом, когда АВ: АС = АС: ВС.

Последнее и есть золотое деление.

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью, если АВ принять за единицу, то AE = 0,618..., ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям.

Построение второго золотого сечения. Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.

Линией второго золотого сечения прямоугольника находится посередине между линией золотого сечения и средней линией прямоугольника.

Пентаграмма

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Построение правильного пятиугольника и пентаграммы.

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O - центр окружности, A - точка на окружности и Е - середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки в золотом отношении. Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в золотой пропорции.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г. вышел в свет его математический труд “Книга об абаке” (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила “Сколько пар кроликов в один год от одной пары родится”. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, и т.д.

Этот ряд известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих, а отношение смежных чисел ряда приближается к отношению золотого деления. Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда. Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение, золотое сpеднее или золотая пропорция. В алгебpе это число обозначается гpеческой буквой φ (фи).

Итак, Золотая пропорция равна 1: 1,618

Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом φ. Это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления. Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Золотой прямоугольник и золотая спираль

В геометрии прямоугольник с золотым отношением сторон стали называть золотым. Его длинные стороны соотносятся к короткими - в соотношении 1,168: 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов. Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Аэрография основывается на тех же "столпах", что и другие виды искусства.

Весь наш мир можно описать числами. Многие числа играют настолько значительную роль в этом описании, что имеют собственные имена: Пи, экспанента (е) и т.д. Среди этих "именных" чисел есть весьма замечательное. Математики, художники, архитекторы в разные времена называли его «золотое число», «божественное число», «божественное сечение». Термин «золотое сечение» придумал Клавдий Птолемей, а популярным он стал благодаря Леонардо Да Винчи , который широко использовал его в своих работах. Люди искусства заметили, что пропорции форм, которые особенно приятны глазу для восприятия, в основе своей имеют «золотое сечение».

Так что же это за число? Золотым сечением называется число Фи (Phi) равное 1,61803. Число названо в честь великого древнегреческого скульптора Фидия (Phidius), который использовал его в своих скульптурах. Как наглядно продемонстрировать принцип «золотого сечения»? Приведем простой пример. Если построить прямоугольник, одна сторона которого в 1,618 раз длиннее другой, то полученное соотношение сторон и представляет собой «золотое сечение». Самые распространенные «золотые прямоугольники» в современном мире - это кредитные карты. Человеческое тело считается красивым, а его пропорции - идеальными, если соотношение между меньшей и большей частью тела равно соотношению между большей частью и целым, то есть равно числу Фи.

***
Известнейшим математическим сочинением античной науки являются «Начала» Евклида. Именно из «Начал» к нам пришла геометрическая задача «о делении отрезка в крайнем и среднем отношении». Что и является самим «Золотым сечением».
Суть задачи такова:
Разделим отрезок АВ точкой С в таком отношении, чтобы большая часть отрезка СВ так относилась к меньшей части отрезка АС, как отрезок АВ к своей большей части СВ, т. е.

Обозначим пропорцию (1.1) через х. Тогда, учитывая, что АВ = АС + СВ, пропорцию (1.1) можно записать в следующем виде:

Откуда вытекает следующее алгебраическое уравнение для вычисления искомой пропорции х:

х* = х + 1. (1.2)
x* - в квадрате

Из «физического смысла» пропорции (1.1) вытекает, что искомое решение уравнения (1.2) должно быть положительным числом, откуда вытекает, что решением задачи о делении отрезка в крайнем и среднем отношении является положительный корень уравнения (1.2), который мы обозначим через , то есть


Приближенное значение золотой пропорции равно:
= 1,61803 39887 49894 84820 45868 34365 63811 77203…

ЗОЛОТЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

На основе вышеизложенных пропорций в геометрии определены такие понятия золотых геометрических фигур:
- золотой прямоугольник (в котором отношение большей стороны к меньшей равно золотой пропорции);
- золотой прямоугольный треугольник;
- золотой эллипс;
- золотой равнобедренный треугольник.



Прямоугольный треугольник со сторонами 3:4:5 называется «совершенным», «священным» или «египетским».
Создатели египетских пирамид выбрали в качестве «главной геометрической идеи» для пирамиды Хеопса - золотой прямоугольный треугольник, а для пирамиды Хефрена – «священный» треугольник.

Пентагон («pentagonon» - греч.), правильный пятиугольник. Если в пентагоне провести все диагонали, то в результате мы получим пятиугольную звезду, называемую пентаграммой («pentagrammon» - греч.: «pente» - пять и «grammon» - линия) или пентаклом.

Пентаграмма, называемая в народных поверьях «ведьминой стопой», играла большую роль во всех магических науках и рассматривалась как средство защиты от злых духов.
Каждые восемь лет планета Венера описывает абсолютно правильный пентакл по большому кругу небесной сферы.
Здание «Пентагона», военного ведомства США имеет форму пентагона.

Пентагон и пентакл включают в себя ряд замечательных фигур, которые широко использовались в произведениях искусства. В античном искусстве широко известен так называемый закон золотой чаши, которые использовали античные скульпторы и золотых дел мастера. Заштрихованная часть пентагона дает схематическое представление золотой чаши.

Когда-то в Советском Союзе существовал Государственный знак качества, в котором явно просматриваются мотивы золотой чаши.

В живой природе широко распространены формы, основанные на пентагональной симметрии – морские звезды, морские ежи, цветы..

ГАРМОНИЯ ЗОЛОТОГО СЕЧЕНИЯ
(краткий обзор истории искусства)

Эталоном красоты человеческого тела, образцом гармонического телосложения издав-на и по праву считаются великие творения греческих скульпторов: Фидия, Поликтета, Мирона, Праксителя. В своих творениях греческие мастера использовали принцип золотой пропорции. Одним из высших достижений классического греческого искусства может служить статуя Дорифора, изваянная Поликтетом в V веке до н. э. Эта статуя считается наилучшим примером для анализа пропорций идеального человеческого тела, установленных античными греческими скульпторами, и напрямую связана с Золотым сечение. М=0,618…
Венера Милосская, статуя богини Афродиты и эталон женской красоты, является од-ним из лучших памятников греческого скульптурного искусства.

Леонардо Да Винчи использовал пропорции Золотого сечения во многих своих самых знаменитых произведениях, и в частности, в «Тайной вечере» и знаменитой «Джоконде».
Исследователи картины «Джоконда» обнаружили, что композиционное построение кар-тины основано на двух золотых треугольниках, повернутых друг к другу своими основаниями. Гармонический анализ картины показывает, что зрачок левого глаза, через который проходит вертикальная ось полотна, находится на пересечении двух биссектрис верхнего золотого треугольника, которые с одной стороны, делят пополам углы при основании золотого треугольника, а с другой стороны, в точках пересечения с бедрами золотого треугольника делят их в пропорции Золотого сечения. Таким образом, Леонардо Да Винчи использовал в своей картине не только принцип симметрии, но и Золотое сечение.

Картина «Святое семейство» Микеланджело признана одним из шедевров западноевропейского искусства эпохи Возрождения. Гармонический анализ показал, что композиция картины основана на пентакле.

Пропорции статуи Давида (работы Микеланджело) основаны на Золотом сечении.

Яркий пример архитектуры барокко, Смольный собор в Санкт-Петербурге, производит неизгладимое впечатление. В его основных пропорциях так же усматривается Золотое сечение.

На знаменитой картине Ивана Шишкина «Корабельная роща» просматриваются мотивы Золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит картину Золотым сечением по горизонтали. Справа от сосны – освещенный солнцем при-горок. Он делит картину Золотым сечением по вертикали. Слева от главной сосны находится много сосен – можно продолжить деление Золотым сечением по горизонтали левой части картины. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении Золотого сечения, придает ей характер уравновешенности и спокойствия.


Строительство штаб-квартиры ООН в Нью-Йорке было завершено в 1943 году. Здание привлекло тогда всеобщее внимание не только как общественное сооружение, созданное с применением новейших архитектурных средств, но и как первый пример использования сплошного солнцемодулирущего экрана на одном из фасадов. В этом здании также просматриваются мотивы Золотого сечения. В композиции здания четко выделяются три поставленных друг на друга золотых прямоугольника, которые и являются его главной архитектурной идеей.

Любое музыкальное произведение имеет временное протяжение и делится некоторыми «эстетическими вехами» на отдельные части, которые обращают на себя внимание и облегчают восприятие в целом. Этими вехами могут быть динамические и интонационные кульминационные пункты музыкального произведения. Отдельные временные интервалы музыкального произведения, соединяемые «кульминационным событием», как правило, находятся в соотношении Золотого сечения. В музыкальных произведениях различных композиторов обычно констатируется не одно Золотое сечение, а целая серия подобных сечений. Наибольшее количество произведений, в которых имеется Золоте сечение, у Аренского (95%), Бетховена (97%), Гайдна (97%), Моцарта (91%), Скрябина (90%), Шопена (92%), Шуберта (91%).

Если музыка – гармоническое упорядочение звуков, то поэзия – гармоническое упорядочение речи. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Золотое сечение в поэзии в первую очередь проявляется как наличие определенного момента стихотворения (кульминации, смыслового перелома, главной мысли произведения) в строке, приходящейся на точку деления общего числа строк стихотворения в золотой пропорции. Так, если стихотворение содержит 100 строк, то первая точка Золотого сечения приходится на 62-ю строку (62%), вторая – на 38-ю (38%) и т. д. Произведения Александра Сергеевича Пушкина, и в том числе «Евгений Онегин» - тончайшее соответствие золотой пропорции! Произведения Шота Руставели и М.Ю. Лермонтова также построены по принципу Золотого сечения.

Один из современных видов искусства – кинематограф, - вобравший в себя драматургию действия, живопись, музыку. В выдающихся произведениях киноискусства право-мерно искать проявления Золотого сечения. Первым это сделал создатель шедевра мирового кино «Броненосец «Потемкин» кинорежиссер Сергей Эйзенштейн. В построении этой картины он сумел воплотить основной принцип гармонии – Золотое сечение. Как отмечает сам Эйзенштейн, красный флаг на мачте восставшего броненосца (точка апогея фильма) взвивается в точке золотой пропорции, отсчитываемой от конца фильма.

В течение многих тысячелетий Золотое сечение было объектом восхищения и поклонения выдающихся ученых и мыслителей: Пифагора, Платона, Евклида, Луки Пачоли, Иоганна Кеплера, Павла Флоренского…
В настоящее время Золотое сечение оказывается источником новых плодотворных идей в математике и теоретической физике, биологии и ботанике, экономике и компьютерной науке…

Материал сформирован по книге «Код да Винчи и ряды Фибоначчи» А. Стахова, А. Слученковой, И. Щербакова, 2007 года выпуска, издательства «Питер».

Золотое сечение просто, как все гениальное. Представьте отрезок АВ, разделенный точкой С. Вам нужно лишь поставить точку С так, чтобы можно было составить равенство СВ/АС = АС/АВ = 0,618. То есть число, полученное при делении самого маленького отрезка СВ на длину среднего отрезка АС должно совпадать с числом, полученным при делении среднего отрезка АС на длину большого отрезка АВ. Числом этим будет 0,618. Это и есть золотая, или, как говорили в древности, божественная пропорция — ф (греческая «фи»). Индекс совершенства.

Трудно сказать, когда именно и кем было замечено, что следование этой пропорции дает ощущение гармонии. Но как только люди стали что-то создавать собственными руками, то интуитивно старались соблюсти это соотношение. Здания, возведенные с учетом ф , всегда выглядели более гармонично по сравнению с теми, в которых пропорции золотого сечения нарушены. Это неоднократно проверялось всевозможными тестами.

В геометрии существуют два объекта, неразрывно связанных с ф : правильный пятиугольник (пентаграмма) и логарифмическая спираль. В пентаграмме каждая линия, пересекаясь с соседней, делит ее в золотой пропорции, а в логарифмической спирали диаметры соседних витков относятся друг к другу так же, как отрезки АС и СВ на нашей прямой АВ. Но ф работает не только в геометрии. Считается, что части любой системы (например, протоны и нейтроны в ядре атома) могут находиться между собой в пропорции, соответствующей золотому числу. В этом случае, полагают ученые, система оказывается оптимальной. Правда, для научного подтверждения гипотезы требуется еще не один десяток лет исследований. Там, где ф нельзя измерить инструментальным методом, применяют так называемый числовой ряд Фибоначчи, в котором каждое последующее число является суммой двух предыдущих: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. Особенность этого ряда заключается в том, что при делении любого его числа на следующее за ним получается результат, максимально приближенный к 0,618. Например, возьмем числа 2,3 и 5. 2/3 = 0,666, а 3/5 = 0,6. По сути, здесь присутствует то же соотношение, что и между составляющими нашего отрезка АВ. Таким образом, если измерительные характеристик какого-то объекта или явления можно вписать в числовой ряд Фибоначчи, это означает, что в их строении соблюдена золотая пропорция. А таких объектов и систем бессчетное множество, и современная наука открывает все новые и новые. Так что вопрос, не является ли ф действительно божественной пропорцией, на которой держится наш мир, вовсе не риторический.

Золотая пропорция в природе

Золотая пропорция соблюдена и в природе, причем уже на самых простейших уровнях. Взять например, белковые молекулы, из которых состоят ткани всех живых организмов. Отличаются молекулы друг от друга по массе, которая зависит от числа входящих в них аминокислот. Не так давно было установлено, что наиболее распространенными являются белки с массами 31; 81,2; 140,6; 231; 319 тыс. единиц. Ученые отмечают, что этот ряд почти соответствует ряду Фибоначчи — 3, 8,13, 21, 34 (здесь ученые не учитывают десятичную разницу этих рядов).

Наверняка при дальнейших исследованиях будет найден белок, масса которого будет коррелировать с 5. Эту уверенность дает даже устройство простейших — многие вирус имеют пентагональную структуру. Стремятся к ф и пропорции химических элементов. Ближе всего к ней плутоний: соотношение числа протонов в его ядре с нейтронами равно 0,627. Дальше всего — водород. В свою очередь, число атомов в химических соединениях удивительно часто кратно числам ряда Фибоначчи. Особенно это касается окислов урана и соединений металлов.

Если вы разрежете нераскрывшуюся почку дерева, то обнаружите там две спирали, направленные в разные стороны. Это зачатки листьев. Соотношение количества витков между этими двумя спиралями всегда будет 2/3, или 3/5, или 5/8 и т. д. То есть опять по Фибоначчи. Кстати, ту же самую закономерность мы видим и в расположении семечек подсолнуха, и в строении шишек хвойных деревьев. Но вернемся к листьям. Когда они раскроются, то не потеряют своей связи с ф , поскольку будут располагаться на стебле или ветке по логарифмической спирали. Но и это еще не все. Существует понятие «угла расхождения листьев» — это угол, под которым находятся листья относительно друг друга. Вычислить этот угол не составляет большого труда. Представьте, что в стебель вписана призма с пятиугольным основанием. Теперь пустите по стеблю спираль. Точки, в которых спираль будет касаться граней призмы, соответствуют тем точкам, откуда растут листья. А теперь от первого листа проведите прямую линию вверх и посмотрите, сколько листьев будет лежать на этой прямой. Их число в биологии обозначается буквой n (в нашем случае это два листа). Теперь посчитайте количество витков, описываемых спиралью вокруг стебля. Полученное число называется листовым циклом и обозначается буквой p (в нашем случае оно равно 5). Теперь умножаем максимальный угол — 360 градусов на 2 (n) и делим на 5 (p). Получаем искомый угол расхождения листьев — 144 градуса. Соотношение n и p пиру каждого растения или дерева свое, но все они не выходят из ряда Фибоначчи: 1/2; 2/5; 3/8; 5/13 и т. д. Биологи установили, что углы, образованные по этим пропорциям, в бесконечности стремятся к 137 градусам — оптимальному углу расхождения, при котором равномерно распределяется солнечный свет по веткам и листьям. Да и в самих листьях мы можем заметить соблюдение золотой пропорции, как, впрочем, и в цветках — легче всего ее заметить в тех, что имеют форму пентаграммы.

ф не обошла и животный мир. По мнению ученых, присутствие золотой пропорции в строении скелета живых организмов решает очень важную задачу. Так достигается максимально возможная прочность остова при минимально возможном весе, что, в свою очередь, позволяет рационально распределить материю по частям тела. Это касается почти всех представителей фауны. Так, морские звезды — совершенные пятиугольники, а раковины многих моллюсков представляют собой логарифмические спирали. Соотношение длины хвоста стрекозы к ее корпусу тоже равно ф . Да и комар не прост: у него три пары ног, брюшко делится на восемь сегментов, а на голове пять усиков-антенн — все тот же ряд Фибоначчи. Число позвонков у многих животных, например у кита или лошади, равно 55. Число ребер — 13, а количество костей в конечностях — 89. А конечности сами имеют трехчастную структуру. Общее же число костей этих животных, считая зубы (которых, 21 пара) и косточки слухового аппарата,- 233 (число Фибоначчи). Чему тут удивляться, когда даже яйцо, из которого, как многие народы считают, все и произошло, можно вписать в прямоугольник золотого сечения — длина такого прямоугольника в 1,618 раза превышает его ширину.

©При частичном или полном использовании данной статьи - активная гиперссылка ссылка на познавательный журнал сайт ОБЯЗАТЕЛЬНА



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники