Фотосинтез, раздел «Биолог. Elysia chlorotica — единственное известное животное с фотосинтезом Впервые появилась способность к фотосинтезу

Некоторые организмы способны захватывать энергию солнечного света и использовать ее для производства органических соединений. Этот процесс, известный как фотосинтез, необходим для поддержания жизни, поскольку обеспечивает энергию как для производителей, так и для потребителей. Фотосинтезирующие организмы, также известные как фотоавтотрофы, являются организмами, способными к процессу фотосинтеза, и включают высшие растения, некоторые (водоросли и эвглена), а также бактерии.

При фотосинтезе световая энергия преобразуется в химическую энергию, которая хранится в виде глюкозы (сахара). Неорганические соединения (диоксид углерода, вода и солнечный свет) используются для производства глюкозы, кислорода и воды. Фотосинтезирующие организмы используют углерод для получения органических молекул (углеводов, липидов и белков), которые необходимы для построения биологической массы.

Кислород, образующийся в виде побочного продукта фотосинтеза, используется многими организмами, включая растения и животных, для . Большинство организмов полагаются на фотосинтез, прямо или косвенно, для получения питательных веществ. Гетеротрофные организмы, такие как животные, большинство и , не способны к фотосинтезу или продуцированию биологических соединений из неорганических источников. Таким образом, они должны потреблять фотосинтетические организмы и другие автотрофы для получения питательных веществ.

Первые фотосинтезирующие организмы

Мы очень мало знаем о самых ранних источниках и организмах фотосинтеза. Были многочисленные предложения относительно того, где и как возник этот процесс, но нет прямых доказательств для подтверждения любого из возможных происхождений. Имеются внушительные доказательства того, что первые фотосинтезирующие организмы появились на Земле примерно от 3,2 до 3,5 млрд лет назад в виде строматолитов, слоистых структур, подобных формам, которые образуют некоторые современные цианобактерии. Существует также изотопное доказательство автотрофной фиксации углерода около 3,7-3,8 миллиарда лет назад, хотя нет ничего, что указывало бы на то, что эти организмы были фотосинтезирующими. Все эти утверждения о раннем фотосинтезе весьма противоречивы и вызвали множество споров в научном сообществе.

Хотя считается, что жизнь впервые появилась на Земле около 3,5 миллиардов лет назад, вероятно, ранние организмы не метаболизировали кислород. Вместо этого они полагались на минералы, растворенные в горячей воде вокруг вулканических жерл. Возможно, что цианобактерии начали производить кислород в качестве побочного продукта фотосинтеза. По мере роста концентрации кислорода в атмосфере, он начал отравлять многие другие формы ранней жизни. Это привело к эволюции новых организмов, которые могли использовать кислород в процессе, известном как дыхание.

Современные фотосинтезирующие организмы

К основным организмам, которые перерабатывают энергию солнца в органические соединения относятся:

  • Растения;
  • Водоросли (диатомовые водоросли, фитопланктон, зеленые водоросли);
  • Эвглена;
  • Бактерии - цианобактерии и аноксигенные фотосинтетические бактерии.

Фотосинтез в растениях

Происходит в специализированных органеллах , называемых . Хлоропласты встречаются в листьях растений и содержат пигмент хлорофилл. Этот зеленый пигмент поглощает световую энергию, необходимую для процесса фотосинтеза. Хлоропласты содержат внутреннюю мембранную систему, состоящую из структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию. Двуокись углерода превращается в углеводы в процессе, известном как фиксация углерода или цикл Кальвина. Углеводы могут хранится в виде крахмала, используемого во время дыхания или для производства целлюлозы. Кислород, который образуется в процессе, выделяется в атмосферу через поры в листьях растений, называемые устьицами.

Растения и цикл питательных веществ

Растения играют важную роль в цикле питательных веществ, в частности, углерода и кислорода. Водные и наземные растения (цветущие растения, мхи и папоротники) помогают регулировать углерод в атмосфере, удаляя углекислый газ из воздуха. Растения также важны для производства кислорода, который выделяется в воздух как ценный побочный продукт фотосинтеза.

Водоросли и фотосинтез

Водоросли представляют собой , которые имеют характеристики как растений, так и животных. Как и животные, водоросли способны питаться органическим материалом в окружающей их среде. Некоторые водоросли также содержат и структуры, обнаруженные в , такие как и . Как и растения, водоросли содержат фотосинтетические органеллы, называемые хлоропластами. Хлоропласты содержат хлорофилл - зеленый пигмент, который поглощает световую энергию для фотосинтеза. Водоросли также имеют другие фотосинтетические пигменты, такие как каротиноиды и фикобилины.

Водоросли могут быть одноклеточными или существовать в виде больших многоклеточных организмов. Они живут в различных местах обитания, включая соленые и пресные водные среды, влажную почву или породы. Фотосинтезирующие водоросли, известные как фитопланктон, встречаются как в морской, так и в пресноводной среде. Морской фитопланктон состоит из диатомей и динофлагеллятов. Пресноводный фитопланктон включает зеленые водоросли и цианобактерии. Фитопланктон плавает вблизи поверхности воды, чтобы получить лучший доступ к солнечному свету, который необходим для фотосинтеза. Фотосинтетические водоросли жизненно важны для глобального цикла веществ, таких как углерод и кислород. Они поглощают углекислый газ из атмосферы и генерируют более половины кислорода на планетарном уровне.

Эвглена

Эвглена - одноклеточные протисты, которые были классифицированы по типу эвгленовые (Euglenophyta ) с водорослями из-за своей способности к фотосинтезу. В настоящее время, ученые считают, что они не являются водорослями, а приобрели свои фотосинтетические способности через эндосимбиотические отношения с зелеными водорослями. Таким образом, эвглена была помещена в типологию эвгленозои (Euglenozoa ).

Фотосинтетические бактерии:

Цианобактерии

Цианобактерии - это кислородные фотосинтетические бактерии. Они собирают солнечную энергию, поглощают углекислый газ и выделяют кислород. Как растения и водоросли, цианобактерии содержат хлорофилл и превращают углекислый газ в глюкозу через фиксацию углерода. В отличие от эукариотических растений и водорослей, цианобактерии являются прокариотическими организмами. Им не хватает окруженного мембраной , хлоропластов и других органелл, обнаруженных в клетках растений и водорослей. Вместо этого цианобактерии имеют двойную наружную и сложенные внутренние тилакоидные мембраны, которые используются при фотосинтезе. Цианобактерии также способны к фиксации азота, процесс превращения атмосферного азота в аммиак, нитрит и нитрат. Эти вещества абсорбируются растениями для синтеза биологических соединений.

Цианобактерии встречаются в различных наземных и водных средах. Некоторые из них считаются , потому что обитают в чрезвычайно суровых условиях, например горячие источники и гиперсоленные водоемы. Цианобактерии также существуют как фитопланктон и могут жить в других организмах, таких как грибы (лишайники), простейшие и растения. Они содержат пигменты фикоэритрин и фикоцианин, которые отвечают за их сине-зеленый цвет. Эти бактерии иногда ошибочно называют сине-зелеными водорослями, хотя они вообще к ним не принадлежат.

Аноксигенные бактерии

Аноксигенные фотосинтетические бактерии представляют собой фотоавтотрофы (синтезируют пищу с использованием солнечного света), которые не продуцируют кислород. В отличие от цианобактерий, растений и водорослей, эти бактерии не используют воду в качестве донора электронов в транспортной цепи электрона при производстве АТФ. Вместо этого они используют водород, сероводород или серу в качестве основных доноров электронов. Аноксигенные бактерии также отличаются от цианобактерий тем, что у них нет хлорофилла для поглощения света. Они содержат бактериохлорофилл, который способен поглощать более короткие волны света, чем хлорофилл. Таким образом, бактерии с бактериохлорофиллом, как правило, обнаруживаются в глубоких водных зонах, куда могут проникать более короткие длины волн света.

Примеры аноксигенных фотосинтетических бактерий включают пурпурные и зеленые бактерии. Пурпурные бактериальные клетки бывают разных форм (сферические, стержневые, спиральные), и они могут быть подвижными или не подвижными. Пурпурные серные бактерии обычно встречаются в водных средах и серных источниках, где присутствует сероводород и отсутствует кислород. Пурпурные несерные бактерии используют более низкие концентрации сульфида, чем пурпурные серные бактерии. Зеленые бактериальные клетки обычно имеют сферическую или стержнеобразную форму, и в основном не подвижны. Зеленые серные бактерии используют сульфид или серу для фотосинтеза и не могут жить при наличии кислорода. Они процветают в богатых сульфидами водных средах и иногда образуют зеленоватый или коричневый окрас в своих местах обитания.

Исследователи давно обратили внимание на «сотрудничество» пятнистой амбистомы (Ambystoma maculatum) и одноклеточных водорослей Oophilia amblystomatis. Жизненный цикл амбистомы начинается с икринки изумрудно-зеленого цвета. Такой окрас обусловлен присутствием в зародыше земноводного одноклеточных водорослей (которые, кстати, больше в природе нигде не встречаются — только в икринках некоторых видов амбистом).

Ранее считалось, что водоросли присутствуют только в желеобразном веществе икринки, окружающем зародыш, который выделяет богатые азотом и углекислым газом продукты жизнедеятельности. А водоросли перерабатывают это «сырье» в энергию, снабжая эмбрион кислородом. Однако их симбиоз оказался гораздо более тесным.

Райан Керни (Ryan Kerney) из Университета Далхаузи (Канада) показал, что водоросли обитают внутри клеток как зародыша, так и взрослого земноводного. Причем они там не только живут, но и предположительно работают, снабжая клетки амбистомы кислородом и углеводами — прямыми продуктами фотосинтеза.

Подобное взаимодействие с фотосинтезирующими организмами ранее было замечено у некоторых беспозвоночных (например, кораллов). Но приобретенная иммунная защита позвоночных обычно уничтожает весь чужеродный биологический материал, попавший во внутреннюю среду организма. Поэтому считалось, что «система безопасности» не позволит внутриклеточным симбионтам спокойно жить и трудиться. Но в данном случае либо клетки амбистомы как-то «отключили» защитные механизмы, либо водоросли нашли способ их обойти.

На изображениях, полученных с помощью просвечивающего электронного микроскопа (ПЭМ), видно, что вокруг водоросли, обитающей внутри клетки амбистомы, собирается несколько митохондрий . Митохондрии — это внутриклеточные «электростанции», превращающие кислород и продукты глюкозы в АТФ , универсальный источник энергии. Предположительно, митохондрии подбираются к водоросли неспроста, рассчитывая воспользоваться продуктами фотосинтеза — кислородом и углеводами.

Каким же образом водоросли попадают внутрь эмбриона? Вероятно, это происходит в то время, когда начинает формироваться нервная система будущей амбистомы. Видео, позволившее увидеть этот промежуток жизни икринки «в ускоренном воспроизведении», демонстрирует ярко-зеленую «вспышку» рядом с зародышем. Эта «вспышка» — не что иное, как резкий рост числа водорослей, вызванный, вероятно, «выбросом» богатых азотом продуктов жизнедеятельности эмбриона. А если есть выход для соединений азота — значит, есть и вход для многочисленных водорослей, которым некоторые из них не преминут воспользоваться.

Такая схема объясняет, почему ранее исследователям не удавалось обнаружить водоросли в клетках эмбрионов: они изучали икринки, еще не прошедшие стадию «зеленой вспышки». Количество водорослей внутри клеток земноводного в это время было очень небольшим. Однако нельзя утверждать, что их не было вовсе.

Одно из любопытных открытий Керни — присутствие водорослей в яйцеводах взрослых самок Ambystoma maculatum, где формируются желеобразные «мешки», окружающие эмбрион. Этот факт указывает на возможность передачи водоросли-симбионта от матери к потомству.

Амбистомы способны вырастить утраченную конечность. Почти все клетки взрослого земноводного сохраняют плюрипотентность — способность делиться и превращаться в другие типы клеток. Вполне возможно, что некоторые клетки Ambystoma maculatum выработали способность принимать водоросли-симбионты благодаря тому, что их процессы «самоидентификации» идут не так, как у клеток других животных.

Ученые обнаружили животных, способных к самостоятельному усвоению энергии солнца. По крайней мере, так говорится в , опубликованной в журнале из авторитетного издания Nature Publishing Group. Этим удивительным животным оказалась обыкновенная тля. Внешне неказистое насекомое в последнее время исправно поставляет биологам научные сенсации. В чем заключаются ее уникальные способности и существуют ли в действительности животные, не нуждающиеся в поиске пропитания, попыталась выяснить "Лента.ру"

Вообще говоря, самостоятельно фотосинтезирующее многоклеточное животное - это сенсация. Причем, сенсация такого рода, которая вызывает у биологов реакцию "этого не может быть, потому что этого не может быть никогда". Тем не менее, статья об удивительной тле опубликована в рецензируемом журнале, а значит, не содержит очевидных ошибок. С другой стороны, она появилась не в самом Nature , а в ее "младшем брате", молодом журнале Scientific Reports . Прежде чем понять, в чем заключается суть работы и насколько справедливо называть ее сенсацией, необходимо разобраться, что дало изучение неприметной тли для современной биологии.

В это сложно поверить, но биологи совершенно серьезно называют бобовую тлю сверхорганизмом . Термин этот во многом искусственный и в случае многих животных выглядит натянуто. Им называют "организмы, состоящие из множества организмов" и подразумевают обычно колониальных насекомых. Тля, впрочем, колониальным насекомым никак не является, но при этом она, безусловно, - сверхорганизм.

Это скромное насекомое питается соком растений, высасывая его напрямую из сосудов, транспортирующих сахар от листьев к корню. Хорошо , что тля тесно взаимодействует с муравьями. Последние обеспечивают ей защиту от врагов в обмен на капельки сахарного сиропа. Сладкой дани для муравьев тлям не жалко - они все равно не могут усвоить то количество сахара, которое содержится в растительном соке.

В этом заключается один из парадоксов питания тли - несмотря на то, что сахара животные потребляют намного больше, чем могут усвоить, в некотором смысле они постоянно голодают. Дело в том, что в растительном соке не содержится почти ничего кроме сахара, и насекомые живут в условиях постоянной нехватки аминокислот, жиров, витаминов и микроэлементов. Даже когда поблизости нет муравьев, тля все равно выделяет сладкий раствор, предварительно отфильтровав из него полезные для нее вещества.

В скором времени после обнаружения у тлей симбиотических бухнерий энтомологи нашли их соседей. Ими оказались бактерии Serratia symbiotica , которые поселились в тле существенно позднее бухнерий и пока не потеряли способности жить вне хозяина. У некоторых тлей, впрочем, сотрудничество тли, бухнерии и серратии уже сильно продвинулось - оказалось, что некоторые аминокислоты серратии помогают синтезировать изнеженным бухнериям, потерявшим эту способность.

Третьим квартирантом сверхорганизма-тли оказались бактерии-защитники. Ученые установили, что Hamiltonella defensa помогает тле в борьбе против наездников. Эти осы являются, наряду с божьими коровками, одними из главных врагов тли. Наездники откладывают яйца в их тела. Личинка наездника, когда вылупляется из яйца, съедает тлю изнутри, а их мумифицированное тело использует вместо кокона. В свое время эта жестокость наездников произвела на Чарльза Дарвина настолько сильное впечатление, что он выдвинул их существование как один из аргументов против существования всеблагого Бога.

Последним же из известных на данный момент квартирантов тли оказались бактерии, которые помогают синтезировать яркие пигменты. Оказалось, что ярко зеленая окраска тлей определяется внутриклеточными бактериями Ricketsiella , которые помогают тлям синтезировать их специфические полициклические красители - афины. Зачем она необходима насекомым, пока сказать сложно, однако известно, что окраска играет важную роль при взаимодействии насекомого с хищниками. Из особей одного и того же вида наездники, например, предпочитают зеленых, а божьи коровки - красных тлей.

Говоря о животных с необычным способом питания, нельзя не упомянуть об уникальном моллюске Elysia chlorotica , освоившим “зеленые технологии”. На ранних этапах своего развития он выглядит и ведет себя как обычный морской слизень - питается водорослями и имеет буроватую окраску. Однако, в отличие от всех остальных растительноядных животных, он, как сказали бы экономисты, предпочитает рыбе удочку. Проще говоря, моллюск поглощает фотосинтетезирующие хлоропласты водоросли Vaucheria litorea , и сохраняет их внутри своих клеток живыми. Так же на заре своей эволюции поступили растения, поглотив однажды сине-зеленые водоросли. Разница заключается в том, что хлоропласты попадают в клетки моллюска беспомощными - за миллионы лет коэволюции они передали синтез девяноста процентов необходимых белков на откуп своим хозяевам. Поэтому моллюску приходится идти на ухищрения, чтобы сохранить хрупких эндосимбионтов. Он скопировал некоторые отвечающие за фотосинтез гены непосредственно из генома Vaucheria , в результате чего оказался способен поддерживать жизнь хлоропластов на протяжении примерно девяти месяцев. Именно столько длится его жизненный цикл.

С окраской тлей тоже не все просто. Частично она определяется афинами, а частично - каротиноидами. За синтез первых отвечают, как уже было сказано, риккетсиеллы, а вот ситуация с каротиноидами еще интереснее. Дело в том, что каротиноиды - очень распространенные пигменты, но синтезировать их ни одно животное не может. Ретинол, или витамин А представляет собой половины молекулы каротина. Как пигмент, который непосредственно воспринимает свет, он используется в глазах абсолютно всех организмов - от одноклеточных и до человека. Кроме того, каротиноиды играют важную и до сих пор не до конца понятную роль при взаимодействии с активными формами кислорода. Тем не менее, все животные вынуждены получать каротиноиды с пищей.

Тем не менее, даже самим авторам статьи осталось непонятно - зачем тлям самостоятельно синтезировать каротиноиды и почему в их теле содержится такое количество этих веществ.
Спустя два года французские ученые , что знают зачем - по их мнению, тли используют каротиноиды для питания солнечной энергией.

Необходимо сразу сказать, что фотосинтезом биологи называют фиксацию углекислого газа из воздуха и перевод его в органические вещества за счет энергии солнца. Само по себе использование энергии света называют фототрофией, а организмы, у которых оно встречается - фотогетеротрофами. Впрочем, это явление настолько редкое по сравнению с фотосинтезом, что ошибку в заголовке допустили даже научные редакторы Nature News.

Именно о фототрофии шла речь в последней статье французских ученых. Они установили, что насекомые, которых выращивают при различной температуре окружающей среды, приобретают различную окраску. Это, по словам авторов, происходит при помощи эпигенетических механизмов - внесения изменения не в саму ДНК, а в способ ее прочтения. Как бы то ни было, те животные, которых выращивали при 8 градусах Цельсия, становились зелеными, а те, что росли при 22 градусах - оранжевыми. Была еще группа просто бледных насекомых, которые жили в условиях повышенной скученности и недостатка ресурсов. Зеленые тли содержали наибольшее количество каротиноидов среди всех собратьев.

Elysia pusilla . Нажмите, чтобы увеличить. Фото с сайта blogs.ngm.com

Так вот, оказалось, что если тлю после заточения в темноте вынести на свет, в ее теле существенно повышается концентрация АТФ - энергетической валюты всякой клетки. Причем у зеленой тли энергетическая подзарядка происходит существенно быстрее, чем у оранжевой. У бледных насекомых, лишенных всяких пигментов, понятно, разницы в запасах АТФ в темноте и на свету не наблюдалось. Кроме того, пигмент оказался распределен непосредственно под поверхностью кутикулы насекомого, там, где наибольшее проникновение солнечных лучей.

Получается, тли все-таки научились извлекать энергию солнца? Да еще и обогнали в этом специалистов - растения, так как вовсе обходятся при этом без хлоропластов и хлорофилла, а используют для этого обычные каротиноиды, синтезированные семью украденными у грибов генами?

Честно говоря, в это очень сложно поверить. К чести авторов, возможность фототрофии они только предлагают в качестве гипотезы, а не считают ее доказанной. У всякого читателя статьи в Scientific Reports сразу возникает множество вопросов. Во-первых, непонятно, как именно передается электронное возбуждение, накапливаемое каротином. Авторы считают, что возбужденные электроны передаются на АТФ-синтазу, но никаких доказательств этому пока нет. Во-вторых, не ясно, какие гены участвуют в процессе. В-третьих, не показано, в каких именно клетках возрастает содержание АТФ - в тех же, что содержат каротиноиды или нет. В-четвертых, не показано - наблюдаемые изменения происходят в клетках тли или внутри ее многочисленных, как мы видели, эндосимбионтов?

Впрочем, все эти вопросы кажутся обычными придирками после того, как вспомнишь самый главный факт о жизни тли - то, чем она питается. Один из авторов той самой статьи в Science , где был показан горизонтальный перенос генов синтеза каротиноидов, прокомментировал новую работу следующим образом: "Получение энергии - самая незначительная проблема в жизни тли. Ее диета чуть менее чем полностью состоит из сахара, большую часть которого она не способна использовать".
В свете этого факта обнаружение у насекомого растительных способностей выглядит весьма подозрительно.

Обнаружив механизм, с помощью которого животные, подобно растениям, осуществляют фотосинтез, учёные задумались о возможности перевода человека на полное обеспечение солнечной энергией

Представьте, что было бы, если бы люди, как растения, могли питаться напрямую солнечной энергией. Это определённо облегчило бы нам жизнь: бесчисленные часы, потраченные на покупку, приготовление и поедание пищи можно было бы потратить на что-нибудь другое. Чрезмерно эксплуатируемые сельскохозяйственные земли вернулись бы к природным экосистемам. Резко упали бы уровни голода, недоедания и болезней, распространяющихся через пищеварительный тракт.

Однако люди и растения уже сотни миллионов лет не имеют общего предка. Наша биология кардинально отличается почти во всех аспектах, поэтому может показаться, что нет способа спроектировать человека так, чтобы он мог осуществлять фотосинтез. Или же это всё-таки возможно?

Эту проблему тщательно изучают некоторые специалисты по синтетической биологии, которые даже пытались создать собственных растительно-животных гибридов. И хотя мы пока далеки от создания способного к фотосинтезу человека, в результате нового исследования был обнаружен интригующий биологический механизм, который может поспособствовать развитию этой зарождающейся области науки.

Elysia chlorotica — животное, способное осуществлять фотосинтез подобно растениям

Недавно представители Морской биологической лаборатории, расположенной в американской деревне Вудс Холл, сообщили, что учёные разгадали секрет Elysia chlorotica — бриллиантово-зелёного морского слизня, который выглядит, как лист растения, питается солнцем, как лист, но фактически является животным. Оказывается, Elysia chlorotica поддерживает такой яркий окрас, употребляя водоросли и забирая себе их гены, обеспечивающие фотосинтез. Это единственный известный экземпляр многоклеточного организма, присваивающий ДНК другого организма.

В своём заявлении соавтор исследования, почётный профессор Южно-Флоридского университета Сидни К. Пирса сказал: «На Земле невозможно такое, чтобы гены водорослей действовали внутри клетки животного. И всё-таки это происходит. Они позволяют животному получать питание от солнца». По словам учёных, если бы люди захотели взломать собственные клетки, чтобы сделать их способными к фотосинтезу, для этого можно было бы использовать подобный механизм.

Что касается солнечной энергии, можно сказать, что люди миллиард лет двигались в неправильном эволюционном направлении. По мере того, как растения становились тонкими и прозрачными, животные становились толстыми и светонепроницаемыми. Растения получают свою небольшую, но постоянную долю солнечного сока, оставаясь при этом на одном месте, но людям нравится двигаться, и для этого им необходима богатая энергией пища.

Если взглянуть на клетки и генетический код человека и растения, окажется, что мы не такие уж и разные. Эта поразительная схожесть жизни на её фундаментальных уровнях позволяет происходить таким необычным вещам, как кража фотосинтеза животным. Сегодня, благодаря развивающейся области синтетической биологии, у нас может получиться воспроизвести такие явления за одно эволюционное мгновение, благодаря чему биопанк-идеи о создании фотосинтезирующих участков кожи кажутся менее фантастическими.

По словам Пирса, «обычно, когда гены одного организма переносят в клетки другого — это не срабатывает. Но если это работает, это может в одночасье изменить многое. Это как ускоренная эволюция».

Морские слизни — не единственные животные, способные осуществлять фотосинтез через симбиотические отношения. Другими классическими примерами таких существ являются кораллы, в клетках которых хранятся фотосинтетические динофлагелляты, а также саламандра пятнистая, использующая водоросли для снабжения своих эмбрионов солнечной энергией.

Однако морские слизни отличаются от подобных животных тем, что они нашли способ исключить посредников и совершать фотосинтез только для себя, поглощая хлоропласты из водорослей и покрывая ими стенки своего пищеварительного тракта. После этого гибрид животного и растения может месяцами жить, питаясь только солнечным светом. Но до сих пор загадкой оставалось, как именно слизни поддерживают свои краденые солнечные фабрики.

Теперь Пирса и другие соавторы исследования нашли ответ на этот вопрос. Похоже, что слизни не только воруют у водорослей хлоропласты, но ещё и крадут важные коды ДНК. В статье, опубликованной в журнале The Biological Bulletin, значится, что поддерживать работу солнечных машин ещё долгое время после поедания водорослей слизням может помогать ген, который кодирует фермент, используемый для починки хлоропластов.

В природе генетическая экспроприация может быть редким явлением, но в лабораториях учёные экспериментируют с ней на протяжении уже многих лет. Перенося гены из одного организма в другой, люди создали множество новых форм жизни: от кукурузы, производящей собственные пестициды, до светящихся в темноте растений. С учётом всего этого, настолько ли безумно предположение, что нам стоит последовать примеру природы и наделить животных — или даже людей — способностью к фотосинтезу?

Биолог, дизайнер и писатель Кристина Агапакис, получившая в Гарварде докторскую степень в области синтетической биологии, провела много времени размышляя над тем, как создать новый симбиоз, при котором животные клетки были бы способны фотосинтезировать. По словам Агапакис, миллиарды лет назад предки растений вобрали в себя хлоропласты, которые были свободноживущими бактериями.

Как рассказала Агапакис, проблема создания питающегося солнцем организма состоит в том, что для поглощения достаточного количества солнечного света необходима поверхность с очень большой площадью. С помощью листьев растениям удаётся поглощать огромное, относительно их размера, количество энергии. Мясистые люди, с их соотношением поверхности и объёма, скорее всего не обладают необходимой пропускной способностью.

«Если вам интересно, можете ли вы обрести способность фотосинтезировать, я отвечу, что, во-первых, вам придётся полностью прекратить двигаться, а во вторых стать полностью прозрачными» рассказывает Агапакис, по подсчётам которой для осуществления фотосинтеза каждой человеческой клетке будут необходимы тысячи водорослей.

На самом деле, питающийся солнечным светом Elysia chlorotica может быть исключением, которое подтверждает правило. Слизняк стал выглядеть и вести себя настолько похоже на лист, что во многом стал больше растением, чем животным.

Но даже если человек не может существовать только за счёт солнца, кто сказал, что он время от времени не может дополнить свой рацион небольшой солнечной закуской? На самом деле, большинство способных к фотосинтезу животных, в числе которых несколько сородичей Elysia chlorotica , полагаются не только на энергию солнца. Свой фотосинтезирующий механизм они используют в качестве резервного генератора на случай нехватки еды. Таким образом, способность фотосинтезировать является страховкой от голода.

Возможно, человек смог бы найти совершенно новое применение фотосинтезу. Например, по словам Агапакис, «на коже человека могли бы быть зелёные пятна — активируемая солнечным светом система заживления ран. Что-то, не требующее такого количества энергии, которое необходимо человеку».

В ближайшем будущем человек не сможет полностью перейти на обеспечение одним только солнечным светом — по крайней мере до тех пор, пока не решится на кардинальные модификации организма — поэтому пока нам остаётся продолжать вдохновляться примером природы.

Восточная изумрудная элизия (Elysia chlorotica) – уникальный вид морских брюхоногих моллюсков. В процессе своей эволюции элизия стала единственным животным (из известных науке), которое пользуется фотосинтезом для питания.

«Elysia chlorotica» или «восточная изумрудная элизия»

Elysia chlorotica обитает вдоль атлантического побережья США и Канады. Ее молодые особи изначально не представляют собой ничего необычного и имеют коричневатую с красными вкраплениями окраску. Но по мере взросления элизия начинает питаться водорослями Vaucheria litorea , прокалывая ее клетки своей теркой-радулой и высасывая все содержимое. Содержащиеся внутри клетки хлоропласты отфильтровываются и ассимилируются с собственными клетками моллюска.


Водоросль Vaucheria litorea

Напомним, что хлоропласты – это компоненты клеток растений, при помощи которых осуществляется процесс фотосинтеза, то есть процесс преобразования солнечной энергии в энергию связей. Хлоропласты содержат фотосинтетический пигмент хлорофилл, который придает растениям зеленый цвет.

Постепенно поглощая все больше хлоропластов, моллюск меняет свой цвет от коричневого до зеленого. После накопления достаточного количества хлоропласта животное переходит на питание солнечной энергией и получает глюкозу в процессе фотосинтеза. Это умение дает восточной изумрудной элизии возможность пережить периоды, когда водоросли Vaucheria litorea недоступны. Интересно, что даже если моллюск будет долгое время оставаться в тени на глубине, и все накопленные хлоропласты погибнут, восточная изумрудная элизия может вновь начать питаться водорослями и накапливать хлоропласт для фотосинтеза.

На данный момент Vaucheria litorea – единственное известное животное, умеющее осуществлять процесс фотосинтеза.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники