Complex trigonometric equations examples with solutions. Trigonometric equations. The Ultimate Guide (2019)

Maintaining your privacy is important to us. For this reason, we have developed a Privacy Policy that describes how we use and store your information. Please review our privacy practices and let us know if you have any questions.

Collection and use of personal information

Personal information refers to data that can be used to identify or contact a specific person.

You may be asked to provide your personal information at any time when you contact us.

Below are some examples of the types of personal information we may collect and how we may use such information.

What personal information do we collect:

  • When you submit an application on the site, we may collect various information, including your name, telephone number, address email etc.

How we use your personal information:

  • Collected by us personal information allows us to contact you and inform you about unique offers, promotions and other events and upcoming events.
  • From time to time, we may use your personal information to send important notices and communications.
  • We may also use personal information for internal purposes, such as conducting audits, data analysis and various research in order to improve the services we provide and provide you with recommendations regarding our services.
  • If you participate in a prize draw, contest or similar promotion, we may use the information you provide to administer such programs.

Disclosure of information to third parties

We do not disclose the information received from you to third parties.

Exceptions:

  • If necessary - in accordance with the law, judicial procedure, in trial, and/or based on public requests or requests from government agencies in the Russian Federation - disclose your personal information. We may also disclose information about you if we determine that such disclosure is necessary or appropriate for security, law enforcement, or other public importance purposes.
  • In the event of a reorganization, merger, or sale, we may transfer the personal information we collect to the applicable successor third party.

Protection of personal information

We take precautions - including administrative, technical and physical - to protect your personal information from loss, theft, and misuse, as well as unauthorized access, disclosure, alteration and destruction.

Respecting your privacy at the company level

To ensure that your personal information is secure, we communicate privacy and security standards to our employees and strictly enforce privacy practices.

Lesson and presentation on the topic: "Solving simple trigonometric equations"

Additional materials
Dear users, do not forget to leave your comments, reviews, wishes! All materials have been checked by an anti-virus program.

Manuals and simulators in the Integral online store for grade 10 from 1C
Solving problems in geometry. Interactive tasks for building in space
Software environment "1C: Mathematical Constructor 6.1"

What we will study:
1. What are trigonometric equations?

3. Two main methods for solving trigonometric equations.
4. Homogeneous trigonometric equations.
5. Examples.

What are trigonometric equations?

Guys, we have already studied arcsine, arccosine, arctangent and arccotangent. Now let's look at trigonometric equations in general.

Trigonometric equations are equations in which a variable is contained under the sign of a trigonometric function.

Let us repeat the form of solving the simplest trigonometric equations:

1)If |a|≤ 1, then the equation cos(x) = a has a solution:

X= ± arccos(a) + 2πk

2) If |a|≤ 1, then the equation sin(x) = a has a solution:

3) If |a| > 1, then the equation sin(x) = a and cos(x) = a have no solutions 4) The equation tg(x)=a has a solution: x=arctg(a)+ πk

5) The equation ctg(x)=a has a solution: x=arcctg(a)+ πk

For all formulas k is an integer

The simplest trigonometric equations have the form: T(kx+m)=a, T is some trigonometric function.

Example.

Solve the equations: a) sin(3x)= √3/2

Solution:

A) Let us denote 3x=t, then we will rewrite our equation in the form:

The solution to this equation will be: t=((-1)^n)arcsin(√3 /2)+ πn.

From the table of values ​​we get: t=((-1)^n)×π/3+ πn.

Let's return to our variable: 3x =((-1)^n)×π/3+ πn,

Then x= ((-1)^n)×π/9+ πn/3

Answer: x= ((-1)^n)×π/9+ πn/3, where n is an integer. (-1)^n – minus one to the power of n.

More examples of trigonometric equations.

Solve the equations: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Solution:

A) This time let’s move directly to calculating the roots of the equation right away:

X/5= ± arccos(1) + 2πk. Then x/5= πk => x=5πk

Answer: x=5πk, where k is an integer.

B) We write it in the form: 3x- π/3=arctg(√3)+ πk. We know that: arctan(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Answer: x=2π/9 + πk/3, where k is an integer.

Solve the equations: cos(4x)= √2/2. And find all the roots on the segment.

Solution:

We'll decide in general view our equation: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Now let's see what roots fall on our segment. At k At k=0, x= π/16, we are in the given segment.
With k=1, x= π/16+ π/2=9π/16, we hit again.
For k=2, x= π/16+ π=17π/16, but here we didn’t hit, which means that for large k we also obviously won’t hit.

Answer: x= π/16, x= 9π/16

Two main solution methods.

We looked at the simplest trigonometric equations, but there are also more complex ones. To solve them, the method of introducing a new variable and the method of factorization are used. Let's look at examples.

Let's solve the equation:

Solution:
To solve our equation, we will use the method of introducing a new variable, denoting: t=tg(x).

As a result of the replacement we get: t 2 + 2t -1 = 0

Let's find the roots of the quadratic equation: t=-1 and t=1/3

Then tg(x)=-1 and tg(x)=1/3, we got the simplest trigonometric equation, let's find its roots.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Answer: x= -π/4+πk; x=arctg(1/3) + πk.

An example of solving an equation

Solve equations: 2sin 2 (x) + 3 cos(x) = 0

Solution:

Let's use the identity: sin 2 (x) + cos 2 (x)=1

Our equation will take the form: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Let us introduce the replacement t=cos(x): 2t 2 -3t - 2 = 0

The solution to our quadratic equation is the roots: t=2 and t=-1/2

Then cos(x)=2 and cos(x)=-1/2.

Because cosine cannot take values ​​greater than one, then cos(x)=2 has no roots.

For cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Answer: x= ±2π/3 + 2πk

Homogeneous trigonometric equations.

Definition: Equations of the form a sin(x)+b cos(x) are called homogeneous trigonometric equations of the first degree.

Equations of the form

homogeneous trigonometric equations of the second degree.

To solve a homogeneous trigonometric equation of the first degree, divide it by cos(x): You cannot divide by cosine if it equal to zero, let's make sure that this is not the case:
Let cos(x)=0, then asin(x)+0=0 => sin(x)=0, but sine and cosine are not equal to zero at the same time, we get a contradiction, so we can safely divide by zero.

Solve the equation:
Example: cos 2 (x) + sin(x) cos(x) = 0

Solution:

Let's take out the common factor: cos(x)(c0s(x) + sin (x)) = 0

Then we need to solve two equations:

Cos(x)=0 and cos(x)+sin(x)=0

Cos(x)=0 at x= π/2 + πk;

Consider the equation cos(x)+sin(x)=0 Divide our equation by cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Answer: x= π/2 + πk and x= -π/4+πk

How to solve homogeneous trigonometric equations of the second degree?
Guys, always follow these rules!

1. See what the coefficient a is equal to, if a=0 then our equation will take the form cos(x)(bsin(x)+ccos(x)), an example of the solution of which is on the previous slide

2. If a≠0, then you need to divide both sides of the equation by the cosine squared, we get:


We change the variable t=tg(x) and get the equation:

Solve example No.:3

Solve the equation:
Solution:

Let's divide both sides of the equation by the cosine square:

We change the variable t=tg(x): t 2 + 2 t - 3 = 0

Let's find the roots of the quadratic equation: t=-3 and t=1

Then: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Answer: x=-arctg(3) + πk and x= π/4+ πk

Solve example No.:4

Solve the equation:

Solution:
Let's transform our expression:


We can solve such equations: x= - π/4 + 2πk and x=5π/4 + 2πk

Answer: x= - π/4 + 2πk and x=5π/4 + 2πk

Solve example no.:5

Solve the equation:

Solution:
Let's transform our expression:


Let us introduce the replacement tg(2x)=t:2 2 - 5t + 2 = 0

The solution to our quadratic equation will be the roots: t=-2 and t=1/2

Then we get: tg(2x)=-2 and tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Answer: x=-arctg(2)/2 + πk/2 and x=arctg(1/2)/2+ πk/2

Problems for independent solution.

1) Solve the equation

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 d) ctg(0.5x) = -1.7

2) Solve the equations: sin(3x)= √3/2. And find all the roots on the segment [π/2; π].

3) Solve the equation: cot 2 (x) + 2 cot (x) + 1 =0

4) Solve the equation: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Solve the equation: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Solve the equation: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Requires knowledge of the basic formulas of trigonometry - the sum of the squares of sine and cosine, the expression of tangent through sine and cosine, and others. For those who have forgotten them or do not know them, we recommend reading the article "".
So, the main ones trigonometric formulas we know it's time to put them into practice. Solving trigonometric equations with the right approach, it’s quite an exciting activity, like, for example, solving a Rubik’s cube.

Based on the name itself, it is clear that a trigonometric equation is an equation in which the unknown is under the sign of the trigonometric function.
There are so-called simplest trigonometric equations. Here's what they look like: sinx = a, cos x = a, tan x = a. Let's consider how to solve such trigonometric equations, for clarity, we will use the already familiar trigonometric circle.

sinx = a

cos x = a

tan x = a

cot x = a

Any trigonometric equation is solved in two stages: we reduce the equation to its simplest form and then solve it as a simple trigonometric equation.
There are 7 main methods by which trigonometric equations are solved.

  1. Variable substitution and substitution method

  2. Solve the equation 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Using the reduction formulas we get:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Replace cos(x + /6) with y to simplify and get the usual quadratic equation:

    2y 2 – 3y + 1 + 0

    The roots of which are y 1 = 1, y 2 = 1/2

    Now let's go in reverse order

    We substitute the found values ​​of y and get two answer options:

  3. Solving trigonometric equations through factorization

  4. How to solve the equation sin x + cos x = 1?

    Let's move everything to the left so that 0 remains on the right:

    sin x + cos x – 1 = 0

    Let us use the identities discussed above to simplify the equation:

    sin x - 2 sin 2 (x/2) = 0

    Let's factorize:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    We get two equations

  5. Reduction to a homogeneous equation

  6. An equation is homogeneous with respect to sine and cosine if all its terms are relative to the sine and cosine of the same power of the same angle. To solve a homogeneous equation, proceed as follows:

    a) transfer all its members to the left side;

    b) take all common factors out of brackets;

    c) equate all factors and brackets to 0;

    d) received in brackets homogeneous equation to a lesser degree, it in turn is divided into sine or cosine to the highest degree;

    e) solve the resulting equation for tg.

    Solve the equation 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Let's use the formula sin 2 x + cos 2 x = 1 and get rid of the open two on the right:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Divide by cos x:

    tg 2 x + 4 tg x + 3 = 0

    Replace tan x with y and get a quadratic equation:

    y 2 + 4y +3 = 0, whose roots are y 1 =1, y 2 = 3

    From here we find two solutions to the original equation:

    x 2 = arctan 3 + k

  7. Solving equations through the transition to a half angle

  8. Solve the equation 3sin x – 5cos x = 7

    Let's move on to x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Let's move everything to the left:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Divide by cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Introduction of auxiliary angle

  10. For consideration, let’s take an equation of the form: a sin x + b cos x = c,

    where a, b, c are some arbitrary coefficients, and x is an unknown.

    Let's divide both sides of the equation by:

    Now the coefficients of the equation, according to trigonometric formulas, have the properties sin and cos, namely: their modulus is not more than 1 and the sum of squares = 1. Let us denote them respectively as cos and sin, where - this is the so-called auxiliary angle. Then the equation will take the form:

    cos * sin x + sin * cos x = C

    or sin(x + ) = C

    The solution to this simplest trigonometric equation is

    x = (-1) k * arcsin C - + k, where

    It should be noted that the notations cos and sin are interchangeable.

    Solve the equation sin 3x – cos 3x = 1

    The coefficients in this equation are:

    a = , b = -1, so divide both sides by = 2

Solving simple trigonometric equations.

Solving trigonometric equations of any level of complexity ultimately comes down to solving the simplest trigonometric equations. And in this the trigonometric circle again turns out to be the best assistant.

Let's recall the definitions of cosine and sine.

The cosine of an angle is the abscissa (that is, the coordinate along the axis) of a point on the unit circle corresponding to a rotation through a given angle.

The sine of an angle is the ordinate (that is, the coordinate along the axis) of a point on the unit circle corresponding to a rotation through a given angle.

The positive direction of movement on the trigonometric circle is counterclockwise. A rotation of 0 degrees (or 0 radians) corresponds to a point with coordinates (1;0)

We use these definitions to solve simple trigonometric equations.

1. Solve the equation

This equation is satisfied by all values ​​of the rotation angle that correspond to points on the circle whose ordinate is equal to .

Let's mark a point with ordinate on the ordinate axis:


Draw a horizontal line parallel to the x-axis until it intersects with the circle. We get two points lying on the circle and having an ordinate. These points correspond to rotation angles in and radians:


If we, leaving the point corresponding to the angle of rotation per radian, go around a full circle, then we will arrive at a point corresponding to the angle of rotation per radian and having the same ordinate. That is, this rotation angle also satisfies our equation. We can make as many “idle” revolutions as we like, returning to the same point, and all these angle values ​​will satisfy our equation. The number of “idle” revolutions will be denoted by the letter (or). Since we can make these revolutions in both positive and negative directions, (or) can take on any integer values.

That is, the first series of solutions to the original equation has the form:

, , - set of integers (1)

Similarly, the second series of solutions has the form:

, Where , . (2)

As you might have guessed, this series of solutions is based on the point on the circle corresponding to the angle of rotation by .

These two series of solutions can be combined into one entry:

If we take (that is, even) in this entry, then we will get the first series of solutions.

If we take (that is, odd) in this entry, then we get the second series of solutions.

2. Now let's solve the equation

Since this is the abscissa of a point on the unit circle obtained by rotating through an angle, we mark the point with the abscissa on the axis:


Draw a vertical line parallel to the axis until it intersects with the circle. We will get two points lying on the circle and having an abscissa. These points correspond to rotation angles in and radians. Recall that when moving clockwise we get a negative rotation angle:


Let us write down two series of solutions:

,

,

(We get to the desired point by going from the main full circle, that is.

Let's combine these two series into one entry:

3. Solve the equation

The tangent line passes through the point with coordinates (1,0) of the unit circle parallel to the OY axis

Let's mark a point on it with an ordinate equal to 1 (we are looking for the tangent of which angles is equal to 1):


Let's connect this point to the origin of coordinates with a straight line and mark the points of intersection of the line with the unit circle. The intersection points of the straight line and the circle correspond to the angles of rotation on and:


Since the points corresponding to the rotation angles that satisfy our equation lie at a distance of radians from each other, we can write the solution this way:

4. Solve the equation

The line of cotangents passes through the point with the coordinates of the unit circle parallel to the axis.

Let's mark a point with abscissa -1 on the cotangent line:


Let's connect this point to the origin of the straight line and continue it until it intersects with the circle. This straight line will intersect the circle at points corresponding to the angles of rotation in and radians:


Since these points are separated from each other by a distance equal to , then general solution We can write this equation like this:

In the given examples illustrating the solution of the simplest trigonometric equations, tabular values ​​of trigonometric functions were used.

However, if the right side of the equation contains a non-tabular value, then we substitute the value into the general solution of the equation:





SPECIAL SOLUTIONS:

Let us mark the points on the circle whose ordinate is 0:


Let us mark a single point on the circle whose ordinate is 1:


Let us mark a single point on the circle whose ordinate is equal to -1:


Since it is customary to indicate values ​​closest to zero, we write the solution as follows:

Let us mark the points on the circle whose abscissa is equal to 0:


5.
Let us mark a single point on the circle whose abscissa is equal to 1:


Let us mark a single point on the circle whose abscissa is equal to -1:


And slightly more complex examples:

1.

Sinus equal to one, if the argument is equal

The argument of our sine is equal, so we get:

Divide both sides of the equality by 3:

Answer:

2.

Cosine is zero if the argument of cosine is

The argument of our cosine is equal to , so we get:

Let’s express , to do this we first move to the right with the opposite sign:

Let's simplify the right side:

Divide both sides by -2:

Note that the sign in front of the term does not change, since k can take any integer value.

Answer:

And finally, watch the video lesson “Selecting roots in a trigonometric equation using a trigonometric circle”

This concludes our conversation about solving simple trigonometric equations. Next time we will talk about how to decide.

When solving many mathematical problems , especially those that occur before grade 10, the order of actions performed that will lead to the goal is clearly defined. Such problems include, for example, linear and quadratic equations, linear and quadratic inequalities, fractional equations and equations that reduce to quadratic ones. The principle of successfully solving each of the mentioned problems is as follows: it is necessary to establish what type of problem is being solved, remember the necessary sequence of actions that will lead to the desired result, i.e. answer and follow these steps.

It is obvious that success or failure in solving a particular problem depends mainly on how correctly the type of equation being solved is determined, how correctly the sequence of all stages of its solution is reproduced. Of course, in this case it is necessary to have the skills to perform identical transformations and calculations.

The situation is different with trigonometric equations. It is not at all difficult to establish the fact that the equation is trigonometric. Difficulties arise when determining the sequence of actions that would lead to the correct answer.

By appearance equation, it is sometimes difficult to determine its type. And without knowing the type of equation, it is almost impossible to choose the right one from several dozen trigonometric formulas.

To solve a trigonometric equation, you need to try:

1. bring all functions included in the equation to “the same angles”;
2. bring the equation to “identical functions”;
3. factor the left side of the equation, etc.

Let's consider basic methods for solving trigonometric equations.

I. Reduction to the simplest trigonometric equations

Solution diagram

Step 1. Express trigonometric function through known components.

Step 2. Find the function argument using the formulas:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Step 3. Find the unknown variable.

Example.

2 cos(3x – π/4) = -√2.

Solution.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Answer: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variable replacement

Solution diagram

Step 1. Reduce the equation to algebraic form with respect to one of the trigonometric functions.

Step 2. Denote the resulting function by the variable t (if necessary, introduce restrictions on t).

Step 3. Write down and solve the resulting algebraic equation.

Step 4. Make a reverse replacement.

Step 5. Solve the simplest trigonometric equation.

Example.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Solution.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Let sin (x/2) = t, where |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 or e = -3/2, does not satisfy the condition |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Answer: x = π + 4πn, n Є Z.

III. Equation order reduction method

Solution diagram

Step 1. Replace this equation with a linear one, using the formula for reducing the degree:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Step 2. Solve the resulting equation using methods I and II.

Example.

cos 2x + cos 2 x = 5/4.

Solution.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Answer: x = ±π/6 + πn, n Є Z.

IV. Homogeneous equations

Solution diagram

Step 1. Reduce this equation to the form

a) a sin x + b cos x = 0 (homogeneous equation of the first degree)

or to the view

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogeneous equation of the second degree).

Step 2. Divide both sides of the equation by

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

and get the equation for tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Step 3. Solve the equation using known methods.

Example.

5sin 2 x + 3sin x cos x – 4 = 0.

Solution.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Let tg x = t, then

t 2 + 3t – 4 = 0;

t = 1 or t = -4, which means

tg x = 1 or tg x = -4.

From the first equation x = π/4 + πn, n Є Z; from the second equation x = -arctg 4 + πk, k Є Z.

Answer: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Method of transforming an equation using trigonometric formulas

Solution diagram

Step 1. Using all possible trigonometric formulas, reduce this equation to an equation solved by methods I, II, III, IV.

Step 2. Solve the resulting equation using known methods.

Example.

sin x + sin 2x + sin 3x = 0.

Solution.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 or 2cos x + 1 = 0;

From the first equation 2x = π/2 + πn, n Є Z; from the second equation cos x = -1/2.

We have x = π/4 + πn/2, n Є Z; from the second equation x = ±(π – π/3) + 2πk, k Є Z.

As a result, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Answer: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

The ability and skill to solve trigonometric equations is very important, their development requires significant effort, both on the part of the student and on the part of the teacher.

Many problems of stereometry, physics, etc. are associated with the solution of trigonometric equations. The process of solving such problems embodies many of the knowledge and skills that are acquired by studying the elements of trigonometry.

Trigonometric equations occupy an important place in the process of learning mathematics and personal development in general.

Still have questions? Don't know how to solve trigonometric equations?
To get help from a tutor, register.
The first lesson is free!

website, when copying material in full or in part, a link to the source is required.



CATEGORIES

POPULAR ARTICLES

2024 “mobi-up.ru” - Garden plants. Interesting things about flowers. Perennial flowers and shrubs