Реле протока воды – назначение, принцип работы и самостоятельное подключение. Реле протока: устройство, работа, выбор, настройка Схема включения насоса с реле протока

Датчик протока — устройство, формирующее выходной сигнал при наличии потока жидкости или газа. Устанавливаются в трубопроводах и воздуховодах, где наличие потока рабочего тела является критичным параметром.

Такой датчик еще называют реле протока, т.к. его принцип действия похож на с той лишь разницей, что его сработку вызывает не появление управляющего напряжения на катушке, а наличие потока жидкости или газа. А вот результатом срабатывания датчика протока, так же как и обычного реле, является смена состояния выходных контактов на противоположные.

Как правило датчик имеет нормально-закрытый (НЗ) и нормально-открытый контакт (НО). При появлении потока рабочей среды НЗ-контакт размыкается, а НО — замыкается.

Существует несколько видов датчиков протока:

Лепестковое реле протока

На рисунке приведена схема датчика протока лепесткового типа.

Как видно из названия, основной рабочий элемент этого типа датчика протока — гибкий лепесток, который контактирует с рабочей средой и отклоняется от вертикального положения в случае наличия потока. Лепесток механически связан с выходными контактами и меняет их состояние, когда сам отгибается.


Лепестковые реле протока Caleffi (слева) и Danfoss (справа)

Датчик протока турбинного типа

На рисунке приведена схема датчика протока турбинного типа.

Такие датчики представляют из себя небольшую турбину, ротор которой оснащён магнитом. При прохождении потока рабочего вещества через устройство турбина начинает вращаться, в результате чего возникает магнитное поле, которое преобразуется в электрические импульсы, поступающие на электронную схему датчика. Электроника вызывает изменение состояния выходных контактов при наличии потока, так же как и в лепестковом датчике.

Таким образом,такие датчики протока имеют два типа выходов: выходные контакты (НО и НЗ) и импульсный выход. Последний используется для определения скорости потока: чем больше частота следования импульсов — тем больше скорость потока.

Датчик протока (турбинка) для котла Ariston

В качестве примера датчика такого типа можно назвать реле протока газового котла Ariston. При появлении потока (когда пользователь открывает кран горячей воды), датчик формирует выходной сигнал и переводит котёл в режим нагрева ГВС.

Использование датчиков протока

Датчики протока чаще всего выполняют защитную, информационную или управляющую функции.

Защитная функция связана с обнаружением наличия потока в системах, где его отсутствие может привести к возникновению аварийных ситуаций или поломкам оборудования. Так, например, защищают насосы, т.к. при работе в отсутствии потока воды происходит их перегрев и выход из строя. Так же можно определить отсутствие потока воздуха в системах вентиляции при засорении фильтра, закрытии заслонки или поломках вентилятора. С помощью реле протока можно выявить утечки в системах водоснабжения, определить отсутствие воды в накопительном баке и т.д.

О информационной функции реле протока говорят тогда, когда наличие или отсутствие протока не связано с аварийной ситуацией, но является значимым событием в системе, о котором необходимо знать пользователю. В таких случаях срабатывание датчика используют для включении световой или звуковой индикации, или формирования сообщения на панель оператора.

Управляющую функцию реле протока выполняет, когда по его сигналу включается или отключается другое оборудование. Например, в системах ГВС, когда пользователь открывает кран с горячей водой, газовый котёл должен включить насос и перейти в режим нагрева ГВС. Это происходит как раз при срабатывании датчика протока после открытия крана.

Схема подключения реле протока

На следующем рисунке приведена типовая схема включения датчика протока для насоса.

При отсутствии протока НО-контакт 1-2 разомкнут, а НЗ-контакт 1-3 замкнут, цепь питания при этом разомкнута, насос остановлен. При появлении потока воды через реле его контакты меняют своё состояние, цепь питания насоса замыкается и он включается.

Нашел подходящую вещь для решения своей задачи. Задачи такие:

1) Чтобы работал полив огорода или была возможность помыть автомобиль (в этом случае не должна срабатывать "блокировка насоса" по НЕ НАБОРУ верхнего давления в течении определенного времени, если оно прописано в алгоритме работы)
2) Иметь таймер на отключение после закрытия протока - перекрытие крана, завоздушивание ХВ, засор и пр. (В случае с реле сухого хода, задавался вопрос - "А что если насос нагонит верхнее давление 2.2 вместо положенных 3.2 бар при попадании воздуха в магистраль и реле не увидев нижнее давление на отключение не отключит насос?" Поэтому нужен таймер на отключение насоса после обрывании потока)
3) Датчик протока дает возможность нагнетать давление в РБ. (РБ необходим от гидроударов и для запаса воды, а также для "активации" датчика протока, который запустит насос сразу либо по таймеру или нижнему давлению)
4) Стоить агрегат не должен слишком больших денег, так как производители не имеют огромного желания оказывать гарантийные ремонты, запчасти тоже должны иметь умеренную стоимость.
5) Устройство возможно перезапустить с кнопки или с вилки (розетки с выключателем) не бегая в подвал для перезапуска насоса при отключении света.
6) При завоздушивании ХВ датчик протока вырубает насос (в случае с поливом огорода сработает таймер после пропадания протока).

Судя по пунктам мне подходит UNIPUMP ТУРБИ-М1 думаю он может работать совместно с реле давления и вот какие варианты действия подразумеваются.

Подключаю провода: реле давления + турби м-1 + насос с РБ.
При первом запуске давление = 0 бар. Заливаю водичку в систему (насос, реле протока и пр.) и открываю кран для выпуска воздуха. Реле давления передает электричество турби м-1, а турби м-1 при первом пуске (при перезагрузке) передает питание на двигатель.

Если поливаю огород то насос работает постоянно (при не достижении верхнего давления не отключит питание реле давления, а датчик протока НЕ ОТКЛЮЧИТ электричество, так как есть проток). В случае когда все краны закрыты = нет протока, нагнетается давление в РБ, насос выключится разрывом цепи в случае верхнего порога от команды реле давления либо насос выключит датчик протока по таймеру, кто сработает раньше. Наверное будет лучше подобрать верхнее давление такое, чтобы раньше отключало питание реле давления, ну это пока мысли в слух.

Если отключило питание реле давления, то датчик протока тоже обезточился. Значит, при падении давления ниже нижнего предела , допустим у реле давления это будет 1.8 бар, оно подает питание к датчику протока. Датчик протока (по идее) при включении/перезапуску должен увидеть это давление и сработать (ПОДАТЬ НАПРЯЖЕНИЕ К НАСОСУ) ТОЛЬКО по достижении своего минимального давления 1.5 бар или по протоку.
Это в теории.
Далее. Понижается давление (при открытии крана) ниже 1.5 бар - включается насос по команде датчика протока и снова все идет по кругу.

Если отключают свет, то ПРИ НАЛИЧИИ необходимого давления в ХВ, реле не включает насос и датчик протока не включает насос, так как нет протока. А если отключили свет и я стравил давление в ХВ до нуля - захотел набрать водички, то запустить эту систему получится только перезагрузив датчик протока, но по сути, после включения света датчик протока должен включаться сам, (как и реле давления) - по факту это перезапуск и есть.
Если из скважины происходит подсос воздуха, но реле давления продолжает нагнетать давление до верхнего установленного предела, датчик протока вырубит питание насоса по таймеру . (Если нет протока и низкое давление, датчик протока вырубает насос через 30 сек.)
В принципе по теории все гладко получается. Если я что то упустил, то дополните меня.
Так как датчик протока работает от двух моментов: при достижении нижнего порога 1.5 бар или появлении протока, думаю наличие реле давления сократит частоту включения насоса, что бы не гонять насос при каждом открытии крана.

З. Ы. Прежде чем покупать вещь, приходится прогонять варианты работы и опробовать ее на основе теории или опыта людей.
Инфа по датчику протока.

В течение всего периода его эксплуатации. Установка реле протока в системе холодоснабжения обязательна, поскольку его основная функция - защита чиллера от нештатной ситуации: чрезвычайно малом либо при полном отсутствии протока жидкости через испаритель. Это возможно в системе лишь только в одном случае - при неработающем компрессоре холодильной машины.

Реле протока - датчик (микровыключатель, реле перепада давлений и т.п.), сигнализирующий контроллеру чиллера о том, что в системе циркуляции теплоносителя есть физический проток жидкости через испаритель чиллера, причем величина расхода через испаритель соответствует номинальному расчетному значению на выбранные рабочие параметры чиллера в системе холодоснабжения.

На практике находят применение реле протока различных типов: механические и дифференциальные реле, датчики перепада давлений и др. Назначение устройств одно - сигнализировать контроллеру чиллера о нормальном протоке жидкости через испаритель. Этим обусловлено место установки реле протока - на трубопроводных магистралях циркуляционного контура вблизи испарителя, как показано на Рис.7.

Наиболее целесообразно устанавливать реле протока на трубопроводной магистрали на выходе из испарителя. Выбирается прямолинейный участок трубы длиной не менее 10 калибров и по центру этого участка устанавливается реле протока. Не допускается установка реле протока вблизи гибов трубы, запорных клапанов или вентилей, регулирующей арматуры.

Корпус реле протока монтируется в вертикальном положении, причем направление стрелки на корпусе реле протока должно совпадать с направлением потока теплоносителя. При установке реле протока необходимо обеспечить защиту контактной группы реле от попадания в корпус грязи и влаги. Допускается установка механического реле протока на прямолинейных вертикальных участках труб, но только при условии направления движения теплоносителя снизу - вверх.

Наиболее простым и дешевым реле протока являются механические реле, принцип работы которых заключается в замыкании контактов микровыключателя при повороте чувствительной пластины («пера») находящейся в потоке движущейся жидкости. Длина пластины выбирается в зависимости от диаметра магистрали, в который вставляется реле протока.

Выбор длины пластины является ответственным моментом при установке реле протока, поскольку предопределяет его чувствительность. Так, при коротких длинах пластины контакты реле протока, установленного в трубопроводе большого диаметра, не замкнутся даже при нормальных величинах расхода, как показано на Рис.8.

При больших диаметрах трубопроводов рекомендуется подкладывать под чувствительную пластину несколько пластин меньшей длины (своеобразная «рессора»), в противном случае возможен быстрый выход из строя реле вследствие поломки пластины в месте заделки. На Рис.9 показаны типичные практические ошибки при инсталляции механических реле протока:

В первом случае при установке реле протока «забыли» установить пластину; во втором случае длинная пластина «цепляется» за трубу при ее повороте. В третьем случае длина пластина не соответствует диаметру трубопровода, поэтому пластина при монтаже реле протока установилась в каком-то произвольном положении; в четвертом случае стрелка на корпусе реле протока не соответствует направлению потока в магистрали.

Замыкание контактов реле протока при достижении требуемой расчетной величины расхода жидкости в магистрали регулируется винтом в корпусе реле при настройке гидравлического контура во время проведения пусконаладочных работ (см. Рис.10). Если по какой то причине расход в магистрали, считай в испарителе, станет меньше (G„2

В чиллерах, как правило, предусмотрены две последовательно скоммутированные ступени защиты по отсутствию или несоответствию расчетному значению расхода жидкости через испаритель. На Рис.11, в качестве примера, представлен фрагмент электрической DAIKIN с одновинтовым компрессором.

Первая ступень представляет собой «сухие» контакты насоса (S9L), которые замыкаются при подаче силового электропитания на насосную группу циркуляционного контура. Сигнал о включении насосной группы поступает на контроллер, но этого недостаточно для подтверждения нормального расхода жидкости через испаритель чиллера. Для этого служит реле протока, замыкание контактов (S8L) которого указывает на то, что расход через испаритель достиг требуемой величины. Только после этого начинается обратный отсчет таймера запуска компрессора чиллера и после его обнуления происходит собственно запуск компрессора.

Если, по какой то причине, расход жидкости через испаритель уменьшился или вообще прекратился, происходит размыкание цепочки защит и компрессор чиллера аварийно останавливается. Современные контроллеры чиллеров фиксируют аварию, таким образом, можно достаточно просто выявить причину аварийной остановки (реле протока).

При необходимости цепочка защит (Рис.11) по протоку жидкости через теплообменные аппараты чиллера может быть расширена. Так, при с водяным охлаждением конденсатора в эту цепочку последовательно включают «сухие» контакты насосной группы и реле протока по стороне .

При инсталляции оборудования холодильной станции необходимо учитывать также особенности электроподключения чиллера и насосной группы. Силовое электропитание рекомендуется выполнять раздельно: не допускается подключение насосной группы от чиллера. При пуске холодильной станции первым всегда производится включение насосной группы, затем чиллера.

Номинальные параметры чиллера (холодопроизводительность, потребляемая мощность и расход через испаритель) приводятся в технических данных при температуре окружающей среды +35°C; теплоносителе циркуляционного контура - вода; температуре воды на выходе из испарителя + 7°C; воды на входе/выходе из испарителя 5K.

Из условий оптимальной работы теплообменного аппарата - испарителя (теплообменных и гидравлических характеристик агрегата) допускается рабочая разность температур в узком диапазоне от 3 до 8 K. В соответствии с вышеизложенным различают:

  • Минимальный расход теплоносителя в циркуляционной системе, соответствующий максимальной разности температур на испарителе - 8К. Эта величина является нижним порогом по расходу в системе циркуляции испарителя, ниже которого изготовителем не рекомендуется работа аппарата - при столь малых расходах возможно замораживание каналов испарителя.
  • Номинальный расход теплоносителя в циркуляционной системе, соответствующий стандартной разности температур на испарителе - 5К, теплоноситель - вода. Эта величина характеризует устойчивую работу чиллера.
  • Максимальный расход теплоносителя в циркуляционной системе, соответствующий минимальной разности температур на испарителе - 3К. Эта величина является верхним пределам по расходу в системе циркуляции испарителя. Дальнейшее увеличение расхода нецелесообразно вследствие ухудшения характеристик испарителя из-за возрастания его гидравлического сопротивления.
  • Расчетный расход теплоносителя через испаритель чиллера, соответствующий выбранной при проектировании системы холодоснабжения разности температур на испарителе, выбранных параметрах чиллера при подборе оборудования, выбранном типе теплоносителя циркуляционного контура. Для стандартных условиях расчетная величина расхода соответствует номинальной.

/strong

Система водоснабжения частного дома невозможна без насоса. Но его надо каким-то образом включать и выключать, следить за тем, чтобы он не работал при отсутствии воды. За включение-отключение насоса отвечает реле давления воды, а следить за наличием воды должна защита от сухого хода насоса. Как реализовать эту защиту в разных ситуация и рассмотртим дальше.

Что такое сухой ход насоса

Откуда бы не качал насос воду, временами создается ситуация, что вода закончилась — при небольшом дебите колодца или скважины воду можно просто всю выкачать. В случае если вода качается из централизованного водопровода, ее подачу могут просто прекратить. Работа насоса при отсутствии воды и называется сухим ходом. Иногда используется термин «холостой ход», хоть это и не совсем правильно.

Чтобы водоснабжение дома работало нормально, нужен не только насос, но и система защиты от сухого жода, автоматика включения-выключения

Что плохого в сухом ходе, кроме того, что электричество тратиться впустую? Если при отсутствии воды насос будет работать, он перегреется и сгорит — перекачиваемая вода используется для его охлаждения. Нет воды — нет охлаждения. Двигатель перегреется и сгорит. Потому, защита от сухого хода насоса — одна из составляющих автоматики, которую придется докупать. Есть, правда, модели со встроенной защитой, но они стоят дорого. Дешевле докупить автоматику.

Как можно защитить насос от сухого хода

Есть несколько разных устройств, которые отключат насос при отсутствии воды:

  • реле защиты от сухого хода;
  • устройства контроля потока воды;
  • датчики уровня воды (поплавковый выключатель и реле контроля урвня).

Все эти устройства предназначена для одного — отключить насос при отсутствии воды. Только работают они по-разному, имеют разную область применения. Дальше разберемся в особенностях их работы и том, когда они наиболее эффективны.

Реле защиты от сухого хода

Несложное электромеханическое устройство контролирует наличие давления в системе. Как только давление опускается ниже порога, цепь питания разрывается, помпа перестает работать.

Состоит реле из мембраны, которая реагирует на давление и контактной группы, которая в нормальном состоянии разомкнута. При понижении давления мембрана давит на контакты, они замыкаются, отключая питание.

Так выглядит защита от сухого хода насоса

Когда оно эффективно

Давление, на которое реагирует устройство — от 0,1 атм до 0,6 атм (в зависимости от заводских настроек). Такая ситуация возможна когда воды мало или ее нет совсем, засорился фильтр, самовсасывающая часть оказалась слишком высоко. В любом случае, это — состояние сухого хода и насос надо отключать, что и происходит.

Устанавливается реле защиты от холостого хода на поверхности, хотя есть модели и в герметичном корпусе. Нормально оно работает в схеме полива или любой системе без гидроаккумулятора. Более эффективно работает с поверхностными насосами, когда обратный клапан установлен после насоса.

Когда оно не гарантирует отключение при отсутствии воды

В системе с ГА его поставить можно, но 100% защиту от сухого хода насоса вы не получите. Все дело в особенности строения и работы такой системы. Ставят защитное реле перед реле давления воды и гидроаккумялятором. При этом между насосом и защитой стоит обычно обратный клапан, то есть мембрана находится под давлением, создаваемым гидроаккумулятором. Это обычная схема. Но при таком способе включения возможна ситуация, когда работающая помпа при отсутствии воды не отключится и перегорит.

Например, создана ситуация сухого хода: насос включился, воды в колодце/скважине/емкости нет, в гидроаккумуляторе некоторое количество есть. Так как нижний порог давления выставляется обычно порядка 1,4-1,6 атм, мембрана защитного реле не сработает. Ведь давление в системе есть. В таком положении мембрана отжата, насос всухую будет работать.

Остановится он или тогда когда перегорит или тогда, когда из гидроаккумулятора израсходуют большую часть запаса воды. Только тогда давление упадет до критического и реле сможет сработать. Если такая ситуация возникла во время активного использования воды, ничего страшного в принципе не случится — несколько десятков литров иссякнут быстро и все будет в норме. Но если это произошло ночью — спустили воду в бачке, помыли руки и ушли спать. Насос включился, сигнала на отключение нет. К утру, когда начнется разбор воды, он будет в нерабочем состоянии. Вот потому в системах с гидроаккумулчторами или насосными станциями лучше использовать другие устройства защиты от сухого хода водяного насоса.

Устройства контроля протока воды

В любой ситуации, которая приводит к сухому ходу насоса, поток воды недостаточен или отсутствует совсем. Есть устройства, которые отслеживают такую ситуацию — реле и контроллеры протока воды. Реле или датчики протока — электромеханические устройства, контроллеры — электронные.

Реле (датчики) протока

Датчики протока бывает двух типов — лепестковые и турбинные. Лепестковые имеет гибкую пластину, которая находится в трубопроводе. При отсутствии тока воды пластина отклоняется от нормального состояния, срабатывают контакты, отключающие питание насоса.

Турбинные датчики потока устроены несколько сложнее. Основа устройства — небольшая турбина с электромагнитом в роторе. При наличии потока воды или газа турбина вращается, создается электромагнитное поле, которое преобразуется в электромагнитные импульсы, считываемые датчиком. Этот датчик, в зависимости от количества импульсов, включает/отключает питание насоса.

Контролеры протока

В основном это устройства, которые совмещают две функции: защиту от сухого хода и реле давления воды. Некоторые модели плюс к этим функциям могут иметь встроенный манометр и обратный клапан. Эти устройства еще называют электронными реле давления. Устройства эти дешевыми не назовешь, но они обеспечивают качественную защиту, отслуживая сразу несколько параметров, обеспечивая требуемое в системе давление, отключая оборудование при недостаточном потоке воды.

Название Функции Параметры срабатывания защиты от сухого хода Подсоединительные размеры Страна/производитель Цена
BRIO 2000M Italtecnica Реле давления + датчик протока 7-15 сек 1" (25 мм) Италия 45$
АКВАРОБОТ ТУРБИПРЕСС Реле давления + реле протока 0,5 л/мин 1" (25 мм) 75$
AL-KO Реле давления + обратный клапан + защита от сухого хода 45 сек 1" (25 мм) Германия 68$
блок автоматики Джилекс Реле давления + защита от холостого хода + манометр 1" (25 мм) Россия 38$
блок автоматики Aquario Реле давления + защита от холостого хода + манометр + обратный клапан 1" (25 мм) Италия 50$

В случае использования блока автоматики гидроаккумулятор — лишнее устройство. Система отлично работает по появлению расхода — открытию крана, срабатыванию бытовой техники и т.п. Но это если запас по напору небольшой. Если же разрыв большой, необходим и ГА, и еще реле давления. Дело в том, что предел отключения насоса в блоке автоматики не регулируется. Насос отключится только тогда, когда создаст максимальное давление. Если он взят с большим запасом по напору, то может создать избыточное давление (оптимальное — не больше 3-4 атм, все что выше ведет к преждевременному износу системы). Потому после блока автоматики и гидроаккумулятор. Такая схема дает возможность регулировать давление, при котором отключается насос.

Датчики уровня воды

Эти датчики устанавливаются в колодце, скважине, емкости. Целесообразно их использовать с насосами погружного типа, хотя и с поверхностными они совместимы. Есть датчики двух типов — поплавковые и электронные.

Поплавковые

Есть два типа датчиков уровня воды — на заполнение емкости (защита от переливов) и на опорожнение — как раз защита от сухого хода. Второй вариант — наш, первый нужен при заполнении . Есть еще модели, которые могут работать и так, и так, а принцип работы зависит от схемы подключения (идет в инструкции).

Принцип работы при использовании для защиты от сухого хода прост: пока есть вода, датчик-поплавок задран вверх, насос может работать, как только уровень воды упал настолько, что датчик опустился, контактор размыкает цепь питания насоса, он не может включиться до тех пор, пока уровень воды не поднимется. Для защиты насоса от холостого хода кабель поплавка подключается в разрыв фазного провода.

Реле контроля уровня

Эти устройства могут использоваться не только для контроля минимального уровня воды и сухого хода в скважине, колодце или накопительной емкости. Они также могут контролировать перелив (переполнение), что часто необходимо при наличии в системе накопительной емкости, из которой затем вода перекачивается в дом или при организации водоснабжения бассейна.

В воду опускаются электроды. Их количество зависит от тех параметров, которые они отслеживают. Если надо следить только за наличием достаточного количества воды, датчиков достаточно два. Один — опускается на уровень минимально возможного уровня, второй — базовый — располагается чуть ниже. В работе используется электропроводность воды: пока оба датчика погружены в воду, между ними протекают небольшие токи. Это значит, что воды в колодце/скважине/емкости достаточно. Если тока нет, это значит, что вода опустилась ниже датчика минимального уровня. По этой команде размыкается цепь питания насоса и он прекращает работу.

Это основные способы, которыми организуется защита от сухого хода насоса в системах водоснабжения частного дома. Есть еще частотные преобразователи, но они стоят дорого, потому их целесообразно применять в больших системах с мощными насосами. Там они быстро окупаются за счет экономии электроэнергии.


Датчик протока воды для насоса – это неотъемлемая деталь оборудования, призванная защищать устройство от работы на «сухом ходу». Датчик обладает небольшим размером и имеет простую конструкцию, что позволяет установить его даже новичку.

Функции и преимущества датчика протока воды

Нередко возникают ситуации, при которых насос запускается в момент полного отсутствия жидкости в трубопроводе. Это провоцирует нагревания мотора агрегата и его дальнейшую поломку. Чтобы исключить возникновение таких ситуаций, следует использовать датчик потока жидкости. Это устройство работает автоматически и контролирует проток воды внутри трубопровода. Если количество проходящей сквозь датчик жидкости меньше нормы, прибор автоматически отключает насос. Таким образом, реле потока воды не только препятствует работе насоса на «сухом ходу», но и поддерживает нормальные для работы агрегата условия.

К преимуществам использования датчика относится:

  • Снижение потребляемой насосом электроэнергии и экономия денежных средств;
  • Защита оборудования от поломок;
  • Увеличение периода эксплуатации насоса.

Помимо всего прочего, реле протока воды для насоса отличается скромными габаритами, невысокой стоимостью и простотой в монтаже.

Реле протока воды – принцип работы и конструкция

Основная функция датчика заключается в отключении насосного оборудования в случае понижения уровня воды или повышения давления в трубопроводе. Если количество воды увеличивается или падает давление, индикатор потока жидкости снова запускает оборудование. За стабильное выполнение возложенных на реле задач отвечают его конструктивные элементы.

Устройство прибора состоит из таких деталей:

  • Патрубок, сквозь который внутрь устройства попадает жидкость;
  • Мембрана, играющая роль одной из стенок внутренней камеры прибора;
  • Герконовый включатель, который отвечает за размыкание и смыкания цепи в электрической схеме насоса;
  • Две разные по диаметру пружины – посредством их сжатия контролируется давление воды, при котором будет срабатывать датчик протока жидкости.

Принцип действия реле заключается в следующем:

  1. При попадании во внутреннюю камеру прибора, вода оказывает давление на мембрану, тем самым смещая ее в сторону;
  2. Расположенный с обратной стороны мембраны магнит становится ближе к герконовому переключателю, из-за чего его контакты замыкаются и насос включается;
  3. Если уровень воды падает, то мембрана с магнитом отдаляется от переключателя, что приводит к размыканию его контактов и отключению насоса.

Установить сигнализатор потока жидкости в трубопровод достаточно просто. Для этого необходимо изучить особенности подключения прибора и его правильную настройку.

Схема подключения устройства

Эффективность эксплуатации реле сильно зависит от его правильного монтажа. Необходимо помнить, что устанавливать прибор можно только на тех участках трубопровода, которые расположены горизонтально. При этом потребуется проследить, чтобы мембрана датчика находилась в вертикальном положении. Правильная схема подключения реле выглядит следующим образом:

В процессе монтажа датчик нужно соединить со сливной частью трубы посредством резьбового соединения. Дистанция, на которой реле должно быть расположено от трубы, должна составлять более 5,5 см.

На корпусе прибора находится стрелка, указывающая направление циркуляции жидкости. При установке устройства нужно проследить, чтобы эта стрелка совпала с направлением протока воды в системе. Если для бытовых целей используется грязная вода, то перед датчиком следует установить очистные фильтры.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники