Представьте схематически структурные уровни материи. Реферат основные структурные уровни материи. Гипотеза «Большого Взрыва» и образования Вселенной

Московская Открытая Социальная Академия

Кафедра математических и общих естественнонаучных дисциплин

Учебная дисциплина:

Концепции современного естествознания.

Тема реферата:

Структурные уровни организации материи.

Факультета заочного образование

номер группы: ФЭБ-3,6

Руководитель:

Москва 2009


ВВЕДЕНИЕ

I. Структурные уровни организации материи: микро-, макро,- мегамиры

1.1 Современный взгляд на структурную организацию материи

II. Структура и ее роль в организации живых систем

2.1 Система и целое

2.2 Часть и элемент

2.3 Взаимодействие части и целого

III. Атом, человек, Вселенная – длинная цепь усложнений

ЗАКЛЮЧЕНИЕСПИСОК ЛИТЕРАТУРЫ


Введение

Все объекты природы (живой и неживой природы)можно представить в виде системы, обладающими особенностями, характеризующими их уровней организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции. Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. Диаграмма наиболее точно отражает целостную картину природы и уровень развития естествознания в целом. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х г.г. нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий.

Цель данной работы заключается в изучении концепции структурной организации материи.


I. Структурные уровни организации материи: микро-, макрО -, мегамиры

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система – сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали – координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали – связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности – это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.

В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие «уровень организации» в отличие от понятия «структура» включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом.

Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия – мера беспорядка). До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации.

В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.

Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен). Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.


1.1 СОВРЕМЕННЫЕ ВЗГЛЯДЫ НА СТРУКТУРНУЮ ОРГАНИЗАЦИЮ МАТЕРИИ

В классическом естествознании учение о принципах структурной организации материи было представлено классическим атомизмом. Идеи атомизма служили фундаментом для синтеза всех знаний о природе. В XX веке классический атомизм подвергся радикальным преобразованиям.

Современные принципы структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно – статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми.

Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.

Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.

Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos – целый), согласно которому целое всегда предшествует частям и всегда важнее частей.

Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.

Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация – это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.

В современной научно обоснованной концепции системной организации материи обычно выделяют три структурных уровня материи:

микромир – мир атомов и элементарных частиц – предельно малых непосредственно ненаблюдаемых объектов, размерность от 10-8 см до 10-16 см, а время жизни – от бесконечности до 10-24 с.

макромир – мир устойчивых форм и соразмерных человеку величин: земных расстояний и скоростей, масс и объемов; размерность макрообъектов соотносима с масштабами человеческого опыта – пространственные величины от долей миллиметра до километров и временные измерения от долей секунды до лет.

мегамир – мир космоса (планеты, звездные комплексы, галактики, метагалактики); мир огромных космических масштабов и скоростей, расстояние измеряется световыми годами, а время миллионами и миллиардами лет;

Изучение иерархии структурных уровней природы связано с решением сложнейшей проблемы определения границ этой иерархии как в мегамире, так и в микромире. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и их объединений.

Микромир, будучи подуровнем макромиров и мегамиров, обладает совершенно уникальными особенностями и поэтому не может быть описан теориями, имеющими отношение к другим уровням природы. В частности, этот мир изначально парадоксален. Для него не применим принцип «состоит из». Так, при соударении двух элементарных частиц никаких меньших частиц не образуется. После столкновения двух протонов возникает много других элементарных частиц – в том числе протонов, мезонов, гиперонов. Феномен «множественного рождения» частиц объяснил Гейзенберг: при соударении большая кинетическая энергия превращается в вещество, и мы наблюдаем множественное рождение частиц. Микромир активно изучается. Если 50 лет назад было известно всего лишь 3 типа элементарных частиц (электрон и протон как мельчайшие частицы вещества и фотон как минимальная порция энергии), то сейчас открыто около 400 частиц. Второе парадоксальное свойство микромира связано с двойственной природой микрочастицы, которая одновременно является волной и корпускулой. Поэтому ее невозможно строго однозначно локализовать в пространстве и времени. Эта особенность отражена в принципе соотношения неопределенностей Гейзенберга.

Наблюдаемые человеком уровни организации материи осваиваются с учетом естественных условий обитания людей, т.е. с учетом наших земных закономерностей. Однако это не исключает предположения о том, что на достаточно удаленных от нас уровнях могут существовать формы и состояния материи, характеризующиеся совсем другими свойствами. В связи с этим ученые стали выделять геоцентрические и негеоцентрические материальные системы.

Геоцентрический мир – эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба. Негеоцентрические системы – особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением, нежели земные. Существует предположение о том, что микромир и мегамир – это окна в негеоцентрические миры, а значит, их закономерности хотя бы в отдаленной степени позволяют представить иной тип взаимодействий, чем в макромире или геоцентрическом типе реальности.

Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он

начинается с расстояний около 107 и масс 1020 кг. Опорной точкой начала мегамира может служить Земля (диаметр 1,28×10+7 м, масса 6×1021 кг). Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.

Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца, равное 1,5×1011 м.

Световой год расстояние, которое проходит свет в течение одного года, а именно 9,46×1015 м.

Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде. Это расстояние равно 206265 а.е. = 3,08×1016 м = 3,26 св. г.

Небесные тела во Вселенной образуют системы различной сложности. Так Солнце и движущиеся вокруг него 9 планет образуют Солнечную систему. Основная часть звезд нашей галактики сосредоточена в диске, видимом с Земли «сбоку» в виде туманной полосы, пересекающей небесную сферу – Млечного Пути.

Все небесные тела имеют свою историю развития. Возраст Вселенной равен 14 млрд. лет. Возраст Солнечной системы оценивается в 5 млрд. лет, Земли – 4,5 млрд. лет.

Еще одна типология материальных систем имеет сегодня достаточно широкое распространение. Это деление природы на неорганическую и органическую, в которой особое место занимает социальная форма материи. Неорганическая материя – это элементарные частицы и поля, атомные ядра, атомы, молекулы, макроскопические тела, геологические образования. Органическая материя также имеет многоуровневую структуру: доклеточный уровень – ДНК, РНК, нуклеиновые кислоты; клеточный уровень – самостоятельно существующие одноклеточные организмы; многоклеточный уровень – ткани, органы, функциональные системы (нервная, кровеносная и др.), организмы (растения, животные); надорганизменные структуры – популяции, биоценозы, биосфера. Социальная материя существует лишь благодаря деятельности людей и включает особые подструктуры: индивид, семья, группа, коллектив, государство, нация и др.

II. СТРУКТУРА И ЕЕ РОЛЬ В ОРГАНИЗАЦИИ ЖИВЫХ СИСТЕМ

2.1СИСТЕМА И ЦЕЛОЕ

Система - это комплекс элементов, находящихся во взаимодействии. В переводе с греческого это целое, составленное из частей, соединение.

Претерпев длительную историческую эволюцию, понятие система с середины XX в. становится одним из ключевых научных понятий.

Первичные представления о системе возникли в античной философии как упорядоченность и ценность бытия. Понятие система сейчас имеет чрезвычайно широкую область применения: практически каждый объект может быть рассмотрен как система.

Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой.

Можно выделить различные типы систем:

По характеру связи между частями и целым - неорганические и органические;

По формам движения материи - механические, физические, химические, физико-химические;

По отношению к движению - статистические и динамические;

По видам изменений - нефункциональные, функциональные, развивающиеся;

По характеру обмена со средой - открытые и закрытые;

По степени организации - простые и сложные;

По уровню развития - низшие и высшие;

По характеру происхождения - естественные, искусственные, смешанные;

По направлению развития - прогрессивные и регрессивные.

Согласно одному из определений, целое - это то, у чего не отсутствует ни одна из частей, состоя из которых, оно именуется целым. Целое обязательно предполагает системную организованность его компонентов.

Понятие целого отражает гармоническое единство и взаимодействие частей по определенной упорядоченной системе.

Родственность понятий целого и системы послужило основанием для не совсем верного их полного отождествления. В случае системы мы имеем дело не с отдельным объектом, а с группой взаимодействующих объектов, взаимно влияющих друг на друга. По мере дальнейшего совершенствования системы в сторону упорядоченности ее компонентов, она может перейти в целостность. Понятие целого характеризует не только множественность составляющих компонентов, но и то, что связь и взаимодействие частей являются закономерными, возникающими из внутренних потребностей развития частей и целого.

Поэтому целое есть особого рода система. Понятие целого является отражением внутренне необходимого, органического характера взаимосвязи компонентов системы, причем, иногда изменение одного из компонентов с неизбежностью вызывает то или иное изменение в другом, а нередко и всей системы.

Свойства и механизм целого как более высокого уровня организации по сравнению с организующими его частями не могут быть объяснены только через суммирование свойств и моментов действия этих частей, рассматриваемых изолированно друг от друга. Новые свойства целого возникают в результате взаимодействия его частей, поэтому, чтобы знать целое, надо наряду со знанием особенностей частей знать закон организации целого, т.е. закон объединения частей.

Поскольку целое как качественная определенность является результатом взаимодействия его компонентов, необходимо остановиться на их характеристике. Являясь составляющими системы или целого, компоненты вступают в различные отношения между собой. Отношения между элементами могут быть разделены на «элемент - структура» и «часть - целое». В системе целого наблюдается подчиненность частей целому. Система целого характерна тем, что она может создать недостающие ей органы.

2.2 ЧАСТЬ И ЭЛЕМЕНТ

Элемент - это такой компонент предмета, который может быть безразличен к специфике предмета. В категории структуры могут найти отношение связи и отношения между элементами, безразличными к его специфике.

Часть - это тоже составной компонент предмета, но, в отличие от элемента, часть - это компонент, который не безразличен к специфике предмета как целого (например, стол состоит из частей - крышки и ножек, а также элементов - скрепляющих части шурупов, болтов, которые можно применять для крепления других предметов: шкафов, тумб и т.д.)

Живой организм как целое состоит из многих компонентов. Одни из них будут просто элементами, другие в то же время и частями. Частями являются лишь такие компоненты, которым присущи функции жизни (обмен веществ и т.д.): внеклеточное живое вещество; клетка; ткань; орган; система органов.

Всем им присущи функции живого, все они выполняют свои специфические функции в системе организации целого. Поэтому часть - это такой компонент целого, функционирование которого определено природой, сущностью самого целого.

Кроме частей в организме имеются и другие компоненты, которые сами по себе не обладают функциями жизни, т.е. являются неживыми компонентами. Это элементы. Неживые элементы имеются на всех уровнях системной организации живой материи:

В протоплазме клетки - зерна крахмала, капли жира, кристаллы;

В многоклеточном организме к числу неживых компонентов, не обладающих собственным обменом веществ и способностью к самовоспроизведению, относятся волосы, когти, рога, копыта, перья.

Таким образом, часть и элемент составляют необходимые компоненты организации живого как целостной системы. Без элементов (неживых компонентов) невозможно функционирование частей (живых компонентов). Поэтому только совокупное единство и элементов и частей, т.е. неживых и живых компонентов, составляет системную организацию жизни, ее целостность.

2.2.1 СООТНОШЕНИЕ КАТЕГОРИЙ ЧАСТЬ И ЭЛЕМЕНТ

Соотношение категорий часть и элемент весьма противоречиво. Содержание категории часть отличается от категории элемент: элементами являются все составные компоненты целого, независимо от того, выражается в них специфика целого или нет, а частями являются лишь те элементы, в которых непосредственно выражена специфика предмета как целого, поэтому категория части уже категории элемента. С другой стороны содержание категории части шире категории элемента, так как лишь определенная совокупность элементов составляет часть. И это можно показать применительно к любому целому.

Значит, существуют определенные уровни или границы в структурной организации целого, которые отделяют элементы от частей. В то же время различие между категориями часть и элемент являются весьма относительными, так как они могут взаимопревращаться, например, органы или клетки, функционируя, подвергаются разрушению, значит, из частей превращаются в элементы и наоборот, они снова строятся из неживого, т.е. элементов, и становятся частями. Элементы, не выведенные из организма, могут превращаться в солевые отложения, которые уже являются частью организма, причем довольно нежелательной.

2.3 В ЗАИМОДЕЙСТВИЕ ЧАСТИ И ЦЕЛОГО

Взаимодействие части и целого состоит в том, что одно предполагает другое, они едины и друг без друга существовать не могут. Не бывает целого без части и наоборот: нет частей вне целого. Часть становится частью лишь в системе целого. Часть приобретает свой смысл только благодаря целому, так же как и целое есть взаимодействие частей.

Во взаимодействии части и целого ведущая, определяющая роль принадлежит целому. Части организма не могут самостоятельно существовать. Представляя собой частные приспособительные структуры организма, части возникают в ходе развития эволюции ради целого организма.

Определяющую роль целого по отношению к частям в органической природе как нельзя лучше подтверждают явления автотомии и регенерации. Ящерица, схваченная за хвост, убегает, оставив кончик хвоста. То же самое происходит с клешнями крабов, раков. Автотомия, т.е. самоотсечение хвоста у ящерицы, клешней у крабов и раков, является защитной функцией, способствующей приспособлению организма, выработавшейся в эволюционном процессе. Организм жертвует своей частью в интересах спасения и сохранения целого.

Явление автотомии наблюдается в тех случаях, когда организм способен восстановить утраченную часть. Недостающая часть хвоста у ящерицы вырастает заново (но, правда, один раз). У крабов и раков тоже часто вырастают отломанные клешни. Значит, организм способен сначала потерять часть ради спасения целого, с тем чтобы потом эту часть восстановить.

Явление регенерации еще больше свидетельствует о подчиненности частей целому: целое обязательно требует выполнения в той или иной мере утраченных частей. Современная биология установила, что регенерационной способностью обладают не только низкоорганизованные существа (растения и простейшие), но и млекопитающие.

Существует несколько видов регенерации: восстанавливаются не только отдельные органы, но и целые организмы из отдельных его участков (гидра из кольца, вырезанного из середины ее тела, простейшие, коралловые полипы, кольчатые черви, морские звезды и т.д.). В русском фольклоре нам известен Змей-Горыныч, у которого добры-молодцы отрубали головы, тут же снова выраставшие… В общебиологическом плане регенерация может рассматриваться как способность взрослого организма к развитию.

Однако определяющая роль целого по отношению к частям не означает, что части лишены своей специфики. Определяющая роль целого предполагает не пассивную, а активную роль частей, направленную на обеспечение нормальной жизни организма как целого. Подчиняясь в общем системе целого, части сохраняют относительную самостоятельность и автономность. С одной стороны, части выступают как компоненты целого, а с другой - они сами являются своеобразными целостными структурами, системами со своими специфическими функциями и структурами. В многоклеточном организме из всех частей именно клетки представляют наиболее высокий уровень целостности и индивидуальности.

То, что части сохраняют свою относительную самостоятельность и автономность, позволяет проводить относительную самостоятельность исследования отдельных систем органов: спинного мозга, вегетативной нервной системы, систем пищеварения и т.д., что имеет большое значение для практики. Пример тому - исследование и раскрытие внутренних причин и механизмов относительной самостоятельности злокачественных опухолей.

Относительная самостоятельность частей в большей мере, чем животным, присуща растениям. Им свойственно образование одних частей из других - вегетативное размножение. Каждому, наверное, в своей жизни приходилось видеть привитые, например, на яблоне черенки других растений.


3..АТОМ, ЧЕЛОВЕК, ВСЕЛЕННАЯ - ДЛИННАЯ ЦЕПЬ УСЛОЖНЕНИЙ

В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемого объекта. Ведь структурность – внутренняя расчлененность материального бытия, способ существования материи. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами, применительно к трем основным сферам объективной действительности эти уровни выглядят следующим образом.

СТРУКТУРНЫЕ УРОВНИ МАТЕРИИ

Неорганическая

Общество
1 Субмикроэлементарный

Биологический

макромолекулярный

Индивид
2 Микроэлементарный Клеточный Семья
3 Ядерный Микроорганический Коллективы
4 Атомарный Органы и ткани Большие социальные группы (классы, нации)
5 Молекулярный Организм в целом Государство (гражданское общество)
6 Макроуровень Популяция Системы государств
7

Мегауровень (планеты,

звездно-планетные системы, Галактики)

Биоценоз

Человечество

8

Метауровень

(метагалактики)

Биосфера Ноосфера

Каждая из сфер объективной действительности включает в себя ряд взаимосвязанных структурных уровней. Внутри этих уровней доминирующими являются координационные отношения, а между уровнями – субординационные.

Системное исследование материальных объектов предполагает не только установление способов описания отношений, связей и структуры множества элементов, но и выделения тех из них, которые являются системообразующими, т. е. обеспечивают обособленное функционирование и развитие системы. Системный подход к материальным образованиям предполагает возможность понимания рассматриваемой системы более высокого уровня. Для системы обычно характерна иерархичность строения, т. е. последовательное включение системы более низкого уровня в систему более высокого уровня. Таким образом, в структуру материи на уровне неживой природы (неорганической) входят элементарные частицы, атомы, молекулы (объекты микромира, макротела и объекты мегамира: планеты, галактики, системы метагалактик и т. д.). Метагалактику часто отождествляют со всей Вселенной, но Вселенная понимается в предельно широком смысле этого слова, она тождественна всему материальному миру и движущейся материи, которая может включать в себя множество метагалактик и других космических систем.

Живая природа также структурирована. В ней выделены уровень биологический и уровень социальный. Биологический уровень включает подуровни:

Макромолекул (нуклеиновые кислоты, ДНК, РНК, белки);

Клеточный уровень;

Микроорганический (одноклеточные организмы);

Органов и тканей организма в целом;

Популяционный;

Биоценозный;

Биосферный.

Основными понятиями данного уровня на последних трех подуровнях являются понятия биотоп, биоценоз, биосфера, требующие пояснения.

Биотоп – совокупность (сообщество) одного и того же вида (например, стая волков), которые могут скрещиваться и производить себе подобных (популяции).

Биоценоз – совокупность популяций организмов, при которых продукты жизнедеятельности одних являются условиями существование других организмов, населяющих участок суши или воды.

Биосфера – глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т. п.), образованная в результате взаимодействия биоценозов.

Общая основа жизни на биологическом уровне – органический метаболизм (обмен веществом, энергией и информацией с окружающей средой) проявляется на любом из выделенных подуровней:

На уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений;

На уровне экосистем (биоценоза) он состоит из цепи превращения вещества, первоначально ассимилированного организмами производителями при посредстве организмов-потребителей и организмов-разрушителей, относящихся к разным видам;

На уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участии факторов космического масштаба.

На определенном этапе развития биосферы возникают особые популяции живых существ, которые благодаря своей способности к труду образовали своеобразный уровень – социальный. Социальная деятельность в структурном аспекте разделяется на подуровни: индивидов, семьи, различных коллективов (производственных), социальных групп и т. д.

Структурный уровень социальной деятельности находится в неоднозначно-линейных связях между собой (например, уровень наций и уровень государств). Переплетение разных уровней в рамках общества порождает представление о господстве случайности и хаотичности в социальной деятельности. Но внимательный анализ обнаруживает наличие в нем фундаментальных структур – главных сфер общественной жизни, которыми являются материально-производственная, социальная, политическая, духовная сферы, имеющие свои законы и структуры. Все они в определенном смысле субординированы в составе общественно-экономической формации, глубоко структурированы и обуславливают генетическое единство общественного развития в целом. Таким образом, любая из трех областей материальной действительности образуется из ряда специфических структурных уровней, которые находятся в строгой упорядоченности в составе той или иной области действительности. Переход от одной области к другой связан с усложнением и увеличением множества образованных факторов, обеспечивающих целостность систем. Внутри каждого из структурных уровней существуют отношения субординации (молекулярный уровень включает атомарный, а не наоборот). Закономерности новых уровней несводимы к закономерностям уровней, на базе которых они возникали, и являются ведущими для данного уровня организации материи. Структурная организация, т.е. системность, является способом существования материи.


Заключение

В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материального бытия, способ существования материи.

Структурные уровни организации материи строятся по принципу пирамиды: высшие уровни состоят из многочисленного числа низших уровней. Низшие уровни являются основой существования материи. Без этих уровней невозможно дальнейшее построение «пирамиды материи». Высшие (сложные) уровни образуются путём эволюции – постепенно переходя от простого к сложному. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами.

Все объекты живой и неживой природы можно представить в виде определенных систем, обладающих конкретными особенностями и свойствами, характеризующими их уровень организации. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц, представляющих собой первоначальный уровень организации материи, и заканчивается живыми организациями и сообществами - высшими уровнями организации.

Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все высшее сводилось к низшему: процессы жизнедеятельности - к совокупности физико-химических реакций, а организация организма - к взаимодействию молекул, клеток, тканей, органов и т.п.

Список литературы

1. Данилова В.С. Основные концепции современного естествознания: Учеб. пособие для вузов. – М., 2000. – 256 с.

2. Найдыш В.М. Концепции современного естествознания: Учеб.. Изд. 2-е, перераб. и доп. – М.; Альфа-М; ИНФРА-М, 2004. – 622 с.

3. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. – М., 2003. – 287 с.

4. Концепция современного естествознания: Под ред. Профессора С. И. Самыгина, Серия «Учебники и учебные пособия» -4-е изд., перераб. и доп. – Ростов н/Д: «Феникс».2003 -448c.

5. Дубнищева Т.Я. Концепция современного естествознания.: учебное пособие для студ. вузов/ 6-е изд., исправ. и допол. –М; Издательский центр «Академия», -20006.-608c.

Материя. структура и системная организация материи. Системная организация как атрибут материи. Структура материи. Структурные уровни организации материи. структурные уровни различных сфер.

Материя

Клеточный - самостоятельно существующие одноклеточные организмы;

Многоклеточный - органы и ткани, функциональные системы (нервная, кровеносная), организмы: растения и животные;

Организм в целом;

Популяции (биотоп) - сообщества особей одного вида, которые связаны общим генофондом (могут скрещиваться и воспроизводить себе подобных): стая волков в лесу, стая рыб в озере, муравейник, кустарник;

- биоценоз - совокупность популяций организмов, при которых продукты жизнедеятельности одних становятся условиями жизни и существования других организмов, населяющих участок суши или воды. Например, лес: популяции живущих в нем растений, а также животных, грибов, лишайников и микроорганизмов взаимодействуют между собой, образуя целостную систему;

- биосфера - глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т.п.), образованная в результате взаимодействия биоценозов.

Общая основа жизни на биологическом уровне - органический метаболизм (обмен веществом, энергией, информацией с окружающей средой), которая проявляется на любом из выделенных подуровней:

На уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений;

На уровне биоценоза он состоит из цепи превращений вещества, первоначально ассимилированного организмами-производителями при посредстве организмов-потребителей и организмов-разрушителей, относящихся к разным видам;

На уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участии факторов космического масштаба.

В рамках биосферы начинает развиваться особый тип материальной системы, который образован благодаря способности особых популяций живых существ к труду - человеческое общество. Социальная действительность включает в себя подуровни: индивид, семья, группа, коллектив, социальная группа, классы, нации, государство, системы государств, общество в целом. Общество существует лишь благодаря деятельности людей.

Структурный уровень социальной действительности находится между собой в неоднозначно-линейных связях между собой (например, уровень нации и уровень государства). Переплетение разных уровней структуры общества не означает отсутствия упорядоченности и структурированности общества. В обществе можно выделить фундаментальные структуры - главные сферы общественной жизни: материально-производственная, социальная, политическая, духовная и т.д., имеющие свои законы и структуры. Все они в определенном смысле субординированы, структурированы и обусловливают генетическое единство развития общества в целом.

Таким образом, любая из областей объективной действительности образуется из ряда специфических структурных уровней, которые находятся в строгой упорядоченности в составе той или иной области действительности. Переход от одной области к другой связан с усложнением и увеличением множества образованных факторов, обеспечивающих целостность систем, т.е. эволюция материальных систем происходит в направлении от простого к сложному, от низшего в высшему.

Внутри каждого из структурных уровней существуют отношения субординации (молекулярный уровень включает атомарный, а не наоборот). Всякая высшая форма возникает на основе низшей, включает ее в себя в снятом виде. Это означает, по существу, что специфика высших форм может быть познана только на основе анализа структур низших форм. И наоборот, сущность формы высшего порядка может быть познана только на основе содержания высшей по отношению к ней формы материи.

Закономерности новых уровней не сводимы к закономерностям уровней, на базе которых они возникли, и являются ведущими для данного уровня организации материи. Кроме того, неправомерен перенос свойств высших уровней материи на низшие. Каждый уровень материи обладает своей качественной спецификой. В высшем уровне материи низшие его формы представлены не в «чистом», а в синтезированном («снятом») виде. Например, нельзя перенести законы животного мира на общество, даже если на первый взгляд кажется, что в нем господствует «закон джунглей». Хотя жестокость человека может быть несравненно больше жестокости хищников, тем не менее хищникам незнакомы такие человеческие чувства, как любовь, сострадание.

С другой стороны, безосновательны попытки отыскания на низших уровнях элементов высших уровней. Например, мыслящий булыжник. Это - гипербола. Но были попытки ученых-биологов, в которых они пытались создать обезьянам «человеческие» условия, рассчитывая через сто-двести лет обнаружить в их потомстве антропоида (первобытного человека).

Структурные уровни материи взаимодействуют между собой как часть и целое. Взаимодействие части и целого состоит в том, что одно предполагает другое, они едины и друг без друга существовать не могут. Не бывает целого без части и нет частей вне целого. Часть приобретает свой смысл только благодаря целому, так же как и целое есть взаимодействие частей.

Во взаимодействии части и целого определяющая роль принадлежит целому. Однако это не означает, что части лишены своей специфики. Определяющая роль целого предполагает не пассивную, а активную роль частей, направленную на обеспечение нормальной жизни универсума как целого. Подчиняясь в общем системе целого, части сохраняют свою относительную самостоятельность и автономность. С одной стороны, они выступают как компоненты целого, а с другой - они сами являются своеобразными целостными структурами, системами. Например, факторами, обеспечивающими целостность систем в неживой природе, являются ядерные, электромагнитные и другие силы, в обществе - производственные отношения, политические, национальные и т.д.

Структурная организация, т.е. системность, является способом существования материи.

Литература

1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.

2. Вайнберг С. Открытие субатомных частиц. М., 1986.

3. Вайнберг С. Первые три минуты. М.,1981.

4. Ровинский Р.Е. Развивающаяся Вселенная. М., 1995.

5. Шкловский И.С. Звезды, их рождение и смерть. М.,1975.

6. Философские проблемы естествознания. М., 1985.

КОНТРОЛЬНАЯ РАБОТА

по дисциплине концепции современного естествознания

Тема №9
«Структурные уровни организации материи»

План:
Введение………………………………………………………… ….……………..2

    Роль системных представлений в анализе структурных уровней организации материи……………….……………………………………2
    Структурные уровни живого……………………………………………..6
    Сущность макромира, микромира и мегамира………………………….7
    Микромир…………………………………………………..… …………..8
    Макромир…………………………………………………..… …………11
    Мегамир…………………………………………………………… ……12
    Анализ классического и современного понимания концепции макромира……………………………………………………… …….…13
Заключение…………………………………………………… …….…………..17

Введение.
Все объекты природы (живой и неживой природы) можно представить в виде системы, обладающей особенностями, характеризующей их уровни организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции.
Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х годах нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий.

    Роль системных представлений в анализе структурных уровней организации материи.
Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.
Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».
Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.
В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира (атом, организм, галактика и сама Вселенная) может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.
Основные принципы системного подхода:
    Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.
    Иерархичность строения, то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.
    Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.
    Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.
Системность, свойство объекта обладать всеми признаками системы.
Для обозначения целостности объектов в науке было выработано понятие «система».
Система - это комплекс элементов, находящихся во взаимодействии. В переводе с греческого это целое, составленное из частей, соединение.
Понятие «элемент» означает минимальный, далее уже неделимый компонент в рамках данной системы. Система может состоять не только из однородных объектов, но и разнородных. Она может быть по своему строению простой и сложной. Сложная система состоит из элементов, которые в свою очередь образуют подсистемы разного уровня сложности и иерархии.
Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой.
Можно выделить различные типы систем:
    по характеру связи между частями и целым - неорганические и органические;
    по формам движения материи - механические, физические, химические, физико-химические;
    по отношению к движению - статистические и динамические;
    по видам изменений - нефункциональные, функциональные, развивающиеся;
    по характеру обмена со средой - открытые и закрытые;
    по степени организации - простые и сложные;
    по уровню развития - низшие и высшие;
    по характеру происхождения - естественные, искусственные, смешанные;
    по направлению развития - прогрессивные и регрессивные.
Совокупность связей между элементами образует структуру системы.
Устойчивые связи элементов определяют упорядоченность системы. Существуют два типа связей между элементами системы – по «горизонтали» и по «вертикали».
Связи по «горизонтали» - это связи координации между однопорядковыми элементами. Они носят коррелирующий характер: ни одна часть системы не может изменяться без того, чтобы не изменились другие части.
Связи по «вертикали» - это связи субординации, то есть соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а так же их иерархию.
Следовательно, исходным пунктом всякого системного исследования является представление именно о целостности изучаемой системы.
Целостность системы означает, что все составные части, взаимодействуя и соединяясь вместе, образуют уникальное целое, обладающее новыми системными свойствами.
Свойства системы – не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом.
Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.
В естественных науках выделяют два больших класса материальных систем: системы неживой природы и системы живой природы.
К системам неживой природы относятся элементарные частицы и поля, физический вакуум, атомы, молекулы, макроскопические тела, планеты и планетные системы, звезды, галактики и система галактик – Метагалактика.
К системам живой природы относятся биополимеры (информационные молекулы), клетки, многоклеточные организмы, популяции, биоценозы и биосфера как совокупность всех живых организмов.
В природе все взаимосвязано, поэтому можно выделить и такие системы, которые включают в себя элементы как живой, так и неживой природы – биогеоценозы, и биосферу Земли.
    Структурные уровни живого.
Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе равных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.
Биосферный – включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая проблема, как изменение концентрации углекислого газа в атмосфере. Используя это подход, ученые выяснили, что в последнее время концентрация углекислого раза возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».
Уровень биоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.
Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций.
Организменный и органно-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.
Клеточный и субклеточный уровниотражают процессы специализации клеток, а также различные внутриклеточные включения.
Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.
Разделение живой материи на уровни является, конечно, весьма условным. Решение конкретных биологических проблем, таких, как регуляция численности вида, опирается на данные о всех уровнях живого. Но все биологи согласны в том, что в мире живого существуют ступенчатые уровни, своего рода иерархии. Представление о них наглядно отражает системный подход в изучении природы, который помогает глубже понять ее.
Фундаментальной основой живого мира, является клетка. Ее исследование помогает уяснить специфику всего живого.
    Сущность макромира, микромира и мегамира.
Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.
Критерием для выделения различных структурных уровней служат следующие признаки:
    пространственно-временные масштабы;
    совокупность важнейших свойств;
    специфические законы движения;
    степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
    некоторые другие признаки.
Все объекты, которые исследует наука, относятся к трем «мирам» (микромир, макромир и мегамир), которые и представляют собой уровни организации материи.


Микромир.
Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое.
Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 секунд.
В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:
1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.
Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII веке была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов.
Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX веке Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.
В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX века, когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.
История исследования строения атома началась в 1895 году благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов.

Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.
Существовало несколько моделей строения атома.
В 1902 году английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».
В 1911 году Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.
Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.
В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.
Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
1) в каждом атоме существует несколько стационарных состояний.
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.
Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.
Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир.
Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира. Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека
Макромир имеет довольно сложную организацию. Его самый маленький элемент – атом, а самая большая система – планета Земля. В его состав входят как неживые системы, так и живые системы различного уровня. Каждый уровень организации макромира содержит как микроструктуры, так и макроструктуры. Например, молекулы вроде бы должны относится к микромиру, поскольку они нами непосредственно не наблюдаются. Но, с одной стороны, самая большая структура микромира – атом. А у нас есть сейчас возможность видеть с помощью микроскопов последнего поколения даже часть атома водорода. С другой стороны, есть огромные молекулы, чрезвычайно сложные по своему строению, например, ДНК ядра может быть длинной почти в один сантиметр. Подобная величина уже вполне сопоставима с нашим опытом, и если бы молекула была толще, мы бы ее увидели невооруженным глазом.
Все вещества, находящиеся в твердом или жидком состоянии, состоят из молекул. Молекулы образуют и кристаллические решетки, и руды, и скалы, и другие объекты, т.е. то, что мы можем почувствовать, увидеть и т.д. Однако, несмотря на такие огромные образования, как горы и океаны, - это все молекулы, связанные между собой. Молекулы – новый уровень организации, они все состоят из атомов, которые в этих системах рассматриваются как неделимые, т.е. элементы системы.
Как физический уровень организации макромира, так и химический уровень имеют дело с молекулами и различными состояниями вещества. Однако химический уровень значительно более сложный. Он не сводится к физическому, рассматривающему строение веществ, их физические свойства, движение (все это было исследовано в рамках классической физики) хотя бы по сложности химических процессов и реакционной способности веществ.
На биологическом уровне организации макромира, кроме молекул, мы обычно не можем без микроскопа разглядеть и клетки. Но ведь есть клетки, которые достигают огромной величины, например аксоны нейронов осьминогов длинной в один метр и даже больше. Вместе с тем все клетки имеют определенные сходные черты: они состоят из мембран, микротрубочек, у многих есть ядра и органеллы. Все мембраны и органеллы в свою очередь состоят из гигантских молекул (белков, липидов и др.), а эти молекула состоят из атомов. Поэтому как гигантские информационные молекулы (ДНК, РНК, ферменты), так и клетки – это микроуровни биологического уровня организации материи, включающего и такие огромные образования, как биоценозы и биосфера.

Мегамир.
Мегамир – это мир объектов, которые несоизмеримо больше человека.
Вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.
Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем - галактик; системы галактик - Метагалактики.
Исследование мегамира тесно связано с космологией и космогонией.
Космогония – это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:
1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
2) звездная космогония.
И хотя на всех этих уровнях действуют свои специфические закономерности, микромир, макромир и мегамир теснейшим образом взаимосвязаны.

    Анализ классического и современного понимания концепции макромира.
В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII веках. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.
Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов -мельчайших в мире частиц.
Исходными началами в атомизме выступали атомы и пустота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяжения и отталкивания.
Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики.
И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей
Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлении, которые не могли быть полностью объяснены в рамках механистической картины мира.
Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц – корпускул. В корпускулярной теории света И. Ньютона утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отражения и преломления света.
Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформулированной Х. Гюйгенсом. Главным аргументом в пользу своей теории Х.Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.
Согласно же корпускулярной теории, между пучками излученных частиц, каковыми является свет, возникали бы столкновения или, по крайней мере, какие-либо возмущения. Исходя из волновой теории Х. Гюйгенс успешно объяснил отражение и преломление света.
Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, распространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гранью, то его тень будет иметь резкую границу. Однако это возражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно видеть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было названо дифракцией света.
Волновая теория света была вновь выдвинута в первые десятилетия ХІХ века английским физиком Т. Юнгом и французским естествоиспытателем О. Ж. Френелем. Т. Юнг дал объяснение явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помощью парадоксального утверждения: свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды, или волновое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается с впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.
Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушали представления ньютоновской физики о дискретном веществе, как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель Х.К.Эрстед, который впервые заметил магнитное действие электрических токов.
Позже М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж.К.Максвелла, заслуга которого состоит в математической разработке идей М.Фарадея о магнетизме и электричестве.
Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера) и открытое М.Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.
Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не «привязанного» к электрическим зарядам. В
и т.д.................

1. Структурные уровни организации материи

В самом общем виде материя представляет собой бесконечное множество всех сосуществующих в мире объектов и систем, совокупность их свойств, связей, отношений и форм движения. При этом она включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все то, что не дано нам в ощущениях. Весь окружающий нас мир - это движущаяся материя в ее бесконечно разнообразных формах и проявлениях, со всеми свойствами, связями и отношениями. В этом мире все объекты обладают внутренней упорядоченностью и системной организацией. Упорядоченность проявляется в закономерном движении и взаимодействии всех элементов материи, благодаря чему они объединяются в системы. Весь мир, таким образом, предстает как иерархически организованная совокупность систем, где любой объект одновременно является самостоятельной системой и элементом другой, более сложной системы.

Согласно современной естественно-научной картине мира все природные объекты также представляют собой упорядоченные, структурированные, иерархически организованные системы. Исходя из системного подхода к природе вся материя делится на два больших класса материальных систем - неживую и живую природу. В системе неживой природы структурными элементами являются: элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы, галактики, метагалактики и Вселенная в целом. Соответственно в живой природе основными элементами выступают белки и нуклеиновые кислоты, клетка, одноклеточные и многоклеточные организмы, органы и ткани, популяции, биоценозы, живое вещество планеты.

В то же время как неживая, так и живая материя включают в себя ряд взаимосвязанных структурных уровней. Структура - это совокупность связей между элементами системы. Поэтому любая система состоит не только из подсистем и элементов, но и из разнообразных связей между ними. Внутри этих уровней главными являют ся горизонтальные (координационные) связи, а между уровнями - вертикальные (субординационные). Совокупность горизонтальных и вертикальных связей позволяет создать иерархическую структуру Вселенной, в которой основным квалификационным признаком является размер объекта и его масса, а также их соотношение с человеком. На основе этого критерия выделяют следующие уровни материи: микромир, макромир и мегамир.

Микромир - область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с. Сюда относятся поля, элементарные частицы, ядра, атомы и молекулы.

Макромир - мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах и километрах, а время - в секундах, минутах, часах, днях и годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности, т.е. макротелами.

Мегамир - сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов - миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты: звезды, галактики и их скопления.

На каждом из этих уровней действуют свои специфические закономерности, несводимые друг к другу. Хотя все эти три сферы мира теснейшим образом связаны между собой.

Структура мегамира

Основными структурными элементами мегамира являются планеты и планетные системы; звезды и звездные системы, образующие галактики; системы галактик, образующие метагалактики.

Планеты - несамосветящиеся небесные тела, по форме близкие к шару, вращающиеся вокруг звезд и отражающие их свет. В силу близости к Земле наиболее изученными являются планеты Солнечной системы, двигающиеся вокруг Солнца по эллиптическим орбитам. К этой группе планет относится и наша Земля, расположенная от Солнца на расстоянии 150 млн. км.

Звезды - светящиеся (газовые) космические объекты, образующиеся из газово-пылевой среды (преимущественно водорода и гелия) в результате гравитационной конденсации. Звезды удалены друг от друга на огромные расстояния и тем самым изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется силой тяготения, создаваемой всеми звездами Галактики. Число звезд в Галактике - порядка триллиона. Самые многочисленные из них - карлики, массы которых примерно в 10 раз меньше массы Солнца. В зависимости от массы звёзды в процессе эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

Белый карлик - это электронная постзвезда, образующаяся в том случае, когда звезда на последнем этапе своей эволюции имеет массу, меньшую 1,2 солнечной массы. Диаметр белого карлика равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность - 10 т/см 3 , т.е. в сотни раз больше земной плотности.

Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. Высокие температура и давление в них создают условия для образования большого количества нейтронов. В этом случае происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурное протекание ядерных реакций. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Оставшийся объект и получил название нейтронной звезды, поскольку он состоит из протонов и нейтронов. Нейтронные звезды также называют пульсарами.

Черные дыры - это звезды, находящиеся на заключительном этапе своего развития, масса которых превышает 2 солнечные массы, и имеющие диаметр от 10 до 20 км. Теоретические расчеты показали, что они обладают гигантской массой (10 15 г) и аномально сильным гравитационным полем. Свое название они получили потому, что не обладают свечением, а за счет своего гравитационного поля захватывают из пространства все космические тела и излучение, которые не могут выйти из них обратно, они как бы проваливаются в них (затягиваются, как в дыру). Из-за сильной гравитации никакое захваченное материальное тело не может выйти за пределы гравитационного радиуса объекта, и поэтому они кажутся наблюдателю «черными».

Звездные системы (звездные скопления) - группы звезд, связанные между собой силами тяготения, имеющие совместное происхождение, сходный химический состав и включающие в себя до сотен тысяч отдельных звезд. Существуют рассеянные звездные системы, например Плеяды в созвездии Тельца. Такие системы не имеют правильной формы. В настоящее время известно более тысячи

звездных систем. Кроме того, к звездным системам относятся шаровые звездные скопления, насчитывающие в своем составе сотни тысяч звезд. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время ученым известно около 150 шаровых скоплений.

Галактики - совокупности звездных скоплений. Понятие «галактика» в современной интерпретации означает огромные звездные системы. Этот термин (от греч. «молоко, молочный») был введен в обиход для обозначения нашей звездной системы, представляющей собой тянущуюся через все небо светлую полосу с молочным оттенком и поэтому названную Млечным Путем.

Условно по внешнему виду галактики можно разделить на три вида. К первому (около 80%) относятся спиральные галактики. У этого вида отчетливо наблюдаются ядро и спиральные «рукава». Второй вид (около 17%) включает эллиптические галактики, т.е. такие, которые имеют форму эллипса. К третьему виду (примерно 3%) относятся галактики неправильной формы, которые не имеют отчетливо выраженного ядра. Кроме того, галактики различаются размерами, числом входящих в них звезд и светимостью. Все галактики находятся в состоянии движения, причем расстояние между ними постоянно увеличивается, т.е. происходит взаимное удаление (разбегание) галактик друг от друга.

Наша Солнечная система принадлежит к галактике Млечного Пути, включающей не менее 100 млрд. звезд и поэтому относящейся к разряду гигантских галактик. Она имеет сплюснутую форму, в центре которой находится ядро с отходящими от него спиральными «рукавами». Диаметр нашей Галактики составляет около 100 тыс., а толщина - 10 тыс. световых лет. Соседней с нами является галактика Туманность Андромеды.

Метагалактика - система галактик, включающая все известные космические объекты.

Поскольку мегамир имеет дело с большими расстояниями, то для измерения этих расстояний разработаны следующие специальные единицы:

световой год - расстояние, которое проходит луч света в течение одного года со скоростью 300 000 км/с, т.е. световой год составляет 10 трлн км;

астрономическая единица - это среднее расстояние от Земли до Солнца, 1 а.е. равна 8,3 световым минутам. Это значит, что солнечные лучи, оторвавшись от Солнца, достигают Земли через 8,3 мин;

парсек - единица измерения космических расстояний внутри звездных систем и между ними. 1пк - 206 265 а.е., т.е. приблизительно равен 30 трлн км, или 3,3 световым года.

Структура макромира

Каждый структурный уровень материи в своем развитии подчиняется специфическим законам, но при этом между этими уровнями нет строгих и жестких границ, все они теснейшим образом связаны между собой. Границы микро- и макромира подвижны, не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов. Тем не менее, выделим важнейшие объекты макромира.

Центральным понятием макромира является понятие вещества, которое в классической физике, являющейся физикой макромира, отделяют от поля. Под веществом понимают вид материи, обладающий массой покоя. Оно существует для нас в виде физических тел, которые обладают некоторыми общими параметрами - удельной массой, температурой, теплоемкостью, механической прочностью или упругостью, тепло- и электропроводностью, магнитными свойствами и т.п. Все эти параметры могут изменяться в широких пределах как от одного вещества к другому, так и для одного и того же вещества в зависимости от внешних условий.

Структура микромира

На рубеже XIX-XX вв. в естественно-научной картине мира произошли радикальные изменения, вызванные новейшими научными открытиями в области физики и затронувшие ее основополагающие идеи и установки. В результате научных открытий были опровергнуты традиционные представления классической физики об атомной структуре вещества. Открытие электрона означало утрату атомом статуса структурно неделимого элемента материи и тем самым коренную трансформацию классических представлений об объективной реальности. Новые открытия позволили:

выявить существование в объективной реальности не только макро-, но и микромира;

подтвердить представление об относительности истины, являющейся только ступенькой на пути познания фундаментальных свойств природы;

доказать, что материя состоит не из «неделимого первоэлемента» (атома), а из бесконечного многообразия явлений, видов и форм материи и их взаимосвязей.

Концепция элементарных частиц. Переход естественно-научных знаний с атомного уровня на уровень элементарных частиц привел ученых к заключению, что понятия и принципы классической физики оказываются неприменимыми к исследованию физических свойств мельчайших частиц материи (микрообъектов), таких, как электроны, протоны, нейтроны, атомы, которые образуют невидимый нами микромир. В силу особых физических показателей свойства объектов микромира совершенно не похожи на свойства объектов привычного нам макромира и далекого мегамира. Отсюда возникла необходимость отказа от привычных представлений, которые навязаны нам предметами и явлениями макромира. Поиски новых способов описания микрообъектов способствовали созданию концепции элементарных частиц.

Согласно этой концепции основными элементами структуры микромира выступают микрочастицы материи, которые не являются ни атомами, ни атомными ядрами, не содержат в себе каких-либо других элементов и обладают наиболее простыми свойствами. Такие частицы были названы элементарными, т.е. самыми простыми, не имеющими в себе никаких составных частей.

После того как было установлено, что атом не является последним «кирпичиком» мироздания, а построен из более простых элементарных частиц, их поиск занял главное место в исследованиях физиков. История открытия фундаментальных частиц началась в конце XIX в., когда в 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу - электрон. История открытия всех известных сегодня элементарных частиц включает два этапа.

Первый этап приходится на 30-50-е гг. XX в. К началу 1930-х гг. были открыты протон и фотон, в 1932 г. - нейтрон, а спустя четыре года - первая античастица - позитрон, которая по массе равна электрону, но имеет положительный заряд. К концу этого периода стало известно о 32 элементарных частицах, причем каждая новая частица была связана с открытием принципиально нового круга физических явлений.

Второй этап приходится на 1960-е гг., кода общее число известных частиц превысило 200. На этом этапе основным средством открытия и исследования элементарных частиц стали ускорители заряженных частиц. В 1970-80-е гг. поток открытий новых элементарных частиц усилился, и ученые заговорили о семействах элементарных частиц. На данный момент науке известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.

Все элементарные частицы обладают некоторыми общими свойствами. Одно из них - свойство корпускулярно-волнового дуализма, т.е. наличие у всех микрообъектов как свойств волны, так и свойств вещества.

Другим общим свойством является наличие почти у всех частиц (кроме фотона и двух мезонов) своих античастиц. Античастицы - это элементарные частицы, схожие с частицами по всем признакам, но отличающиеся противоположными знаками электрического за ряда и магнитного момента. После открытия большого числа античастиц ученые заговорили о возможности существования антивещества и даже антимира. При соприкосновении вещества с антивеществом происходит процесс аннигиляции - превращение частиц и античастиц в фотоны и мезоны больших энергий (вещество превращается в излучение).

Еще одним важнейшим свойством элементарных частиц является их универсальная взаимопревращаемость. Этого свойства нет ни в макро-, ни в мегамире.

Уровня организации материи (2)Реферат >> Биология

3 2. Триединство концептуальных уровней познания в современной биологии …………………………….….. 4 3. Структурные уровни организации живых систем ….. . 6 ... уровне организации материи . Живая природа (коротко - жизнь) - это такая форма организации материи на уровне ...

  • Особенности биологического уровня организации материи (1)

    Реферат >> Биология

    5. Структурные уровни живого. 6. Заключение. 7. Список литературы. Введение. Биологический уровень организации материи представлен... и др. Структурные уровни организации живого. Системно-структурные уровни организации многообразных форм живого достаточно...

  • Наследственность. Структурные уровни организации наследственного материала

    Реферат >> Биология

    Наследственность. Структурные уровни организации наследственного материала . Наследственность. Структурные уровни организации наследственного материала . Регуляция... Причина – серьезные препятствия: -организация генетического материала в форме хромосом - ...

  • Материалистическое понимание субстанции прошло более чем двух тысячелетий период развития. Начало ему было положено с упрощенного представления о праматери, т.е. о чем-то, что предшествовало современной материи, поэтому является субстанцией.

    Понятие материя - фундаментальная категория в философии и естествознании. В переводе с латинского materia означает вещество. Первоначальные представления о материи возникли уже в античности, где представители различных философских школ отождествляли ее с материальной субстанцией, лежащей в основе бытия: вода (Фалес), воздух (Анаксимен), огонь (Гераклит), атомы (Демокрит) и т. д.

    В средние века материю понимали, в основном, как материал, из которого сделаны вещи. Материя как философская категория не развивалась, хотя мы и находим у Августина Блаженного понятия «материя духовная и телесная».

    В XVII - XVIII вв. складывается новое понимание материи, отличное от представлений древних. Был сделан вывод, что материя - не конкретное вещество (земля, огонь, вода, воздух и т.д.), а физическая реальность как таковая. В этот период от философии отпочковываются и получают развитие в качестве самостоятельных отраслей математические, естественные я общественные науки. Наиболее развитыми науками того времени были механика и геометрия, поэтому в воззрениях на материю преобладал механицизм. Материя определяется как совокупность чувственно воспринимаемых тел. Материя отождествляется с веществом, состоящим из неделимых, неизменных атомов, обладающим универсальными свойствами: механической массой, весом, непроницаемостью, инерцией. Все вещественное обладает этими свойствами, а значит, вполне логично перенести эти свойства с конкретных веществ на Вещество как таковое.

    В это же время появилось определение материи, данное английским философом Дж. Беркли, классиком субъективного идеализма. В своей работе «Диалог между философом Беркли и материалистом» он вкладывает в уста материалиста понятие материи как реальности, которая воздействует на наши ощущения, но не зависит от них. Беркли, будучи субъективным идеалистом, всю свою философскую энергию направил на борьбу против материализма и его основного понятия - материи, но именно данное им определение материи было использовано французскими материалистами, которые под материей понимали все то, что действует на наши органы чувств. Под этим всем, что действует на наши органы чувств, они подразумевали вещество, представляющее собой совокупность конкретных частиц-атомов, тождественных между собой, обладающих универсальными свойствами. В основании материи-вещества лежат фундаментальные законы мироздания, и прежде всего закон сохранения вещества.

    Такое понимание материи было исторически прогрессивным, но и ограниченным. Немецкий философ Ф. Энгельс был первым, кто указал на эту ограниченность. Он считал, что нельзя сводить материю к совокупности конкретных частиц-атомов, поскольку они сами могут иметь сложную структуру. Ему принадлежит определение материи как общего понятия, охватывающего все многообразие вещей.

    Ограниченность концепции отождествления материи с веществом стала особенно очевидной для естествознания на рубеже XIX-XX вв. Именно в тот период в физике разразился кризис, связанный с революционными открытиями.

    В качестве одного из вариантов выхода из кризиса и дальнейшего развития физики и философии В.И. Ленин предложил новое методологическое основание - новое определение материи: «Материя есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них».

    Ленин считал, что необходимо разграничить философское понимание материи и физические представления о ее свойствах и строении, и дал философское определение, заостряя внимание на том, что материя как категория не обозначает ничего, кроме объективной реальности, а значит, что какие бы ни были открыты новые состояния материи, достаточно определить: является ли это открытие объективной реальностью или нет. Далее своим определением он подчеркивал, что материя есть первичная реальность по отношению к нашим ощущениям, так как она существует независимо от них.

    Определение Ленина является более диалектичным по сравнению с прежними метафизическими определениями, так как оно открыто для последующих знаний и развития. Но, как любое определение, оно исторически ограничено. Оно, скорее, гносеологично, чем онтологично, ибо сказать, что материя - объективная реальность, - это в содержательном плане ничего не сказать. Данное определение работает против субъективного идеализма, но совершенно не работает против идеализма объективного. Ведь и бог, и мировой разум, и абсолютная идея вписываются в определение объективной реальности для верующего в них человека. Бог является к верующему в конкретном образе, который тот воспринимает с помощью органов чувств.

    Но, несмотря на указанные недостатки, в материализме сегодня нет более нового и совершенного определения материи. Наряду с мировоззренческим следует отметить и методологическое значение этого определения для развития естествознания. Идея неисчерпаемости материи, высказанная В.И. Лениным, сейчас является одним из руководящих методологических принципов естественнонаучного исследования. Это особенно ярко проявляется в современных взглядах на строение материи, сложившихся в естественных науках.

    Кратко охарактеризуем современные представления о структурной организации материи . Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами. Критериями выделения структурных уровней служат пространственно-временные масштабы, совокупность важнейших свойств и законов изменения, степень относительной сложности, возникшей в процессе исторического развития материи в данной области мира.

    Неорганическая природа разбивается на три 1)микро-, 2)макро- и 3)мегамиры, имеющие следующую последовательность структурных уровней: 1) субмикроэлементарный – микроэлементарный (элементарные частицы и полевые взаимодействия) – ядерный – атомарный – молекулярный – 2) уровень макроскопических тел (ряд подуровней) – 3) планеты – звездно-планетные комплексы – галактики – метагалактики.

    Живая природа подразделяется на следующие уровни: биологических макромолекул – клеточный уровень – микроорганизменный – органов и тканей – организма в целом – популяционный – биоценозный – биосферный. Общая основа жизни – органический метаболизм (обмен веществом, энергией и информацией со средой) – специфицируется в каждом из выделенных уровней.

    Социальная действительность представлена уровнями: индивидов – семьи – коллективов – социальных групп – классов – национальностей и наций – государств и систем государств – общества в целом.

    Отметим также, что более высокие уровни системной организации материи возникают в рамках сравнительно небольшого множества явлений предыдущего уровня. Так, из трёх основных групп уровней неорганической природы (микро-, макро- и мегамир) лишь на уровне меньшей части явлений макромира возникает жизнь, точно также социум возникает у представителей единственного биологического вида. Усложнению системной организации материи тем самым сопутствует сужение возможностей его реализации.



    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники