Найти интервалы монотонного возрастания функции онлайн. Тема «Возрастание и убывание квадратичной функции» Найти по

Функция называетсявозрастающей на интервале
, если для любых точек

выполняется неравенство
(большему значению аргумента соответствует большее значение функции).

Аналогично, функция
называетсяубывающей на интервале
, если для любых точек
из этого интервала при выполнении условия
выполняется неравенство
(большему значению аргумента соответствует меньшее значение функции).

Возрастающие на интервале
и убывающие на интервале
функции называютсямонотонными на интервале
.

Знание производной дифференцируемой функции позволяет находить интервалы ее монотонности.

Теорема (достаточное условие возрастания функции).
функции
положительна на интервале
, то функция
монотонно возрастает на этом интервале.

Теорема (достаточное условие убывания функции). Если производная дифференцируемой на интервале
функции
отрицательна на интервале
, то функция
монотонно убывает на этом интервале.

Геометрический смысл этих теорем состоит в том, что на интервалах убывания функции касательные к графику функции образуют с осью
тупые углы, а на интервалах возрастания – острые (см.рис. 1).

Теорема (необходимое условие монотонности функции). Если функция
дифференцируема и
(
) на интервале
, то она не убывает (не возрастает) на этом интервале.

Алгоритм нахождения интервалов монотонности функции
:


Пример. Найти интервалы монотонности функции
.

Точка называетсяточкой максимума функции

такое, что для всех, удовлетворяющих условию
, выполнено неравенство
.

Максимум функции – это значение функции в точке максимума.

На рис 2 показан пример графика функции, имеющей максимумы в точках
.

Точка называетсяточкой минимума функции
, если существует некоторое число
такое, что для всех, удовлетворяющих условию
, выполнено неравенство
. Нарис. 2 функция имеет минимум в точке .

Для максимумов и минимумов есть общее название – экстремумы . Соответственно точки максимума и точки минимума называются точками экстремума .

Функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

В точках экстремума у производной есть особые свойства.

Теорема (необходимое условие экстремума). Пусть в точке функция
имеет экстремум. Тогда либо
не существует, либо
.

Те точки из области определения функции, в которых
не существует или в которых
, называютсякритическими точками функции .

Таким образом, точки экстремума лежат среди критических точек. В общем случае критическая точка не обязана быть точкой экстремума. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум.

Пример. Рассмотрим
. Имеем
, но точка
не является точкой экстремума (см.рис 3).

Теорема (первое достаточное условие экстремума). Пусть в точке функция
непрерывна, а производная
при переходе через точкуменяет знак. Тогда– точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Если при переходе через точку производная не меняет знак, то в точкеэкстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции
равна нулю (
), а ее вторая производная в этой точке отлична от нуля (
) и непрерывна в некоторой окрестности точки. Тогда– точка экстремума
; при
это точка минимума, а при
это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума:

    Найти производную.

    Найти критические точки функции.

    Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

    Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума:


Пример. Найти экстремумы функции
.

Пусть на некоторой плоскости задана прямоугольная система координат. Графиком некоторой функции , (X- область определения) называется множество точек этой плоскости с координатами, где .

Для построения графика нужно изобразить на плоскости множество точек, координаты которых (x;y) связаны соотношением .

Чаще всего графиком функции является некоторая кривая.

Самый простой способ построения графика - построение по точкам.

Составляется таблица, в которой в одной ячейке стоит значение аргумента, а в противоположной ей значение функции от этого аргумента. Затем полученные точки отмечаются на плоскости, и через них проводится кривая.

Пример построения по точкам графика функции :

Построим таблицу.

Теперь строим график.

Но таким способом не всегда возможно построить достаточно точный график - для точности нужно брать очень много точек. Поэтому используют различные методы исследования функции.

С полной схемой исследования функции знакомятся в высших учебных заведениях. Одним из пунктов исследования функции является нахождение промежутков возрастания (убывания) функции.

Функция называется возрастающей (убывающей) на некотором промежутке, если , для любых x 2 и x 1 из этого промежутка, таких, что x 2 >x 1 .

Например, функция, график которой изображен на следующем рисунке, на промежутках возрастает, а на промежутке (-5;3) убывает. То есть, на промежутках график идет «в гору». А на промежутке (-5;3) «под гору».

Еще одним из пунктов исследования функции является исследование функции на периодичность.

Функция называется периодичной, если существует такое число T, что .

Число T называют периодом функции. Например, функция периодична, здесь период равен 2П, так

Примеры графиков периодичных функций:

Период первой функции равен 3, а второй – 4.

Функция называется четной, если Пример четной функции y=x 2 .

Функция называется нечетной, если Пример нечетной функции y=x 3 .

График четной функции симметричен относительно оси ОУ (осевая симметрия).

График нечетной функции симметричен относительно начала координат (центральная симметрия).

Примеры графиков четной (слева) и нечетной (справа) функции.

"Возрастание и убывание функции"

Цели урока:

1. Научить находить промежутки монотонности.

2. Развитие мыслительных способностей, обеспечивающих анализ ситуации и разработку адекватных способов действия (анализ, синтез, сравнение).

3. Формирование интереса к предмету.

Ход урока

Сегодня мы продолжаем изучать приложение производной и рассмотрим вопрос о её применениик исследованию функций. Фронтальная работа

А теперь дадим некоторые определения свойствам функции “Мозговой штурм”

1. Что называют функцией?

2. Как называется переменная Х?

3. Как называется переменная Y?

4. Что называется областью определения функции?

5. Что называется множеством значения функции?

6. Какая функция называется чётной?

7. Какая функция называется нечётной?

8. Что можно сказать о графике чётной функции?

9. Что можно сказать о графике нечётной функции?

10. Какая функция называется возрастающей?

11. Какая функция называется убывающей?

12. Какая функция называется периодической?

Математика изучает математические модели. Одной из главнейших математических моделей является функция. Существуют разные способы описания функций. Какой самый наглядный?

– Графический.

– Как построить график?

– По точкам.

Этот способ подойдет, если заранее известно, как примерно выглядит график. Например, что является графиком квадратичной функции, линейной функции, обратной пропорциональности, функции y = sinx? (Демонстрируются соответствующие формулы, учащиеся называют кривые, являющиеся графиками.)

А что если требуется построить график функции или еще более сложной? Можно найти несколько точек, но как ведет себя функция между этими точками?

Поставить на доске две точки, попросить учеников показать, как может выглядеть график “между ними”:

Выяснить, как ведет себя функция, помогает ее производная.

Откройте тетради, запишите число, классная работа.

Цель урока: узнать, как связан график функции с графиком ее производной, и научиться решать задачи двух видов:

1. По графику производной находить промежутки возрастания и убывания самой функции, а также точки экстремума функции;

2. По схеме знаков производной на промежутках находить интервалы возрастания и убывания самой функции, а также точки экстремума функции.

Подобные задания отсутствуют в наших учебниках, но встречаются в тестах единого государственного экзамена (часть А и В).

Сегодня на уроке мы рассмотрим небольшой элемент работы второго этапа изучения процесса, исследование одного из свойств функции - определение промежутков монотонности

Для решения поставленной задачи, нам необходимо вспомнить некоторые вопросы, рассмотренные ранее.

Итак, запишем тему сегодняшнего урока: Признаки возрастания и убывания функции.

Признаки возрастания и убывания функции:

Если производная данной функции положительна для всех значений х в интервале (а; в), т.е.f"(x) > 0, то функция в этом интервале возрастает.
Если производная данной функции отрицательна для всех значений х в интервале(а; в), т.е.f"(x) < 0, то функция в этом интервале убывает

Порядок нахождения промежутков монотонности:

Найти область определения функции.

1. Найти первую производную функции.

2. решать самой на доске

Найти критические точки, исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции. Найти промежутки монотонности функций:

а) область определения,

б) найдем первую производную:,

в)найдем критические точки: ; , и

3. Исследуем знак производной в полученных промежутках, решение представим в виде таблицы.

указатьна точки экстремума

Рассмотрим несколько примеровисследования функции на возрастание и убывание.

Достаточное условие существования максимума состоит в смене знака производной при переходе через критическую точку с "+" на "-", а для минимума с "-" на "+". Если при переходе через критическую точку смены знака производной не происходит, то в данной точке экстремума нет

1. Найти Д(f).

2. Найти f"(x).

3. Найти стационарные точки, т.е. точки, где f"(x) = 0 или f"(x) не существует.
(Производная равна 0 в нулях числителя, производная не существует в нулях знаменателя)

4. Расположить Д(f) и эти точки на координатной прямой.

5. Определить знаки производной на каждом из интервалов

6. Применить признаки.

7. Записать ответ.

Закрепление нового материала.

Учащиеся работают в парах, решение записывают в тетрадях.

а) у = х³ - 6 х² + 9 х - 9;

б) у = 3 х² - 5х + 4.

Двое работают у доски.

а) у = 2 х³ – 3 х² – 36 х + 40

б) у = х4-2 х³

3.Итог урока

Домашнее задание: тест (дифференцированный)

Возрастание и убывание функции

функция y = f (x ) называется возрастающей на отрезке [a , b ], если для любой пары точек х и х" , а ≤ х выполняется неравенство f (x ) f (x" ), и строго возрастающей - если выполняется неравенство f (x ) f (x" ). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х 2 (рис. , а) строго возрастает на отрезке , а

(рис. , б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x ), а убывающие f (x )↓. Для того чтобы дифференцируемая функция f (x ) была возрастающей на отрезке [а , b ], необходимо и достаточно, чтобы её производная f "(x ) была неотрицательной на [а , b ].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x ) называется возрастающей в точке x 0 , если найдётся такой интервал (α, β), содержащий точку x 0 , что для любой точки х из (α, β), х> x 0 , выполняется неравенство f (x 0) f (x ), и для любой точки х из (α, β), х 0 , выполняется неравенство f (x ) ≤ f (x 0). Аналогично определяется строгое возрастание функции в точке x 0 . Если f "(x 0) > 0, то функция f (x ) строго возрастает в точке x 0 . Если f (x ) возрастает в каждой точке интервала (a , b ), то она возрастает на этом интервале.

С. Б. Стечкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Возрастание и убывание функции" в других словарях:

    Понятия математического анализа. Функция f(x) называется возрастающей на отрезке ВОЗРАСТНАЯ СТРУКТУРА НАСЕЛЕНИЯ соотношение численности разных возрастных групп населения. Зависит от уровней рождаемости и смертности, продолжительности жизни людей … Большой Энциклопедический словарь

    Понятия математического анализа. Функция f(х) называется возрастающей на отрезке , если для любой пары точек x1 и x2, a≤x1 … Энциклопедический словарь

    Понятия матем. анализа. Ф ция f(x) наз. возрастающей на отрезке [а, b], если для любой пары точек х1 и x2, а<или=х1 <х<или=b, выполняется неравенство f(x1)Естествознание. Энциклопедический словарь

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия

    Раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия

    Аристотель и перипатетики - Аристотелевский вопрос Жизнь Аристотеля Аристотель родился в 384/383 гг. до н. э. в Стагире, на границе с Македонией. Его отец по имени Никомах был врачом на службе у македонского царя Аминта, отца Филиппа. Вместе с семьей молодой Аристотель… … Западная философия от истоков до наших дней

    - (КХД), квантовополевая теория сильного вз ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы квант. число,… … Физическая энциклопедия

    I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

    Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называютмаксимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называютминимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.

На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

    если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;

    если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники