Изменения ода связанные с данной двигательной способностью. Е. В. ЗубареваВозрастная морфология: практический курс. Что будем делать с полученным материалом

Вопрос 20.

Организм человека обладает сформировавшейся в процессе эволюции способностью приспосабливаться (адаптироваться) к изменяющимся условиям среды. Под влиянием внешних факторов могут изменяться физиологический статус, гомеостаз человека, их морфологические признаки и т.д. Однако адаптационные возможности организма не беспредельны, спортсмены не всегда и не в полной мере могут приспособиться к тем или иным условиям среды, физическим нагрузкам, в результате чего возникают заболевания.

В поддержании гомеостаза и его регуляции важнейшая роль принадлежит нервной системе, железам внутренней секреции, особенно гипоталамо-гипофизарной и лимбической системам мозга.

Физиологические механизмы, обусловливающие (при систематической мышечной тренировке) повышение неспецифической резистентности организма, сложны и многообразны. Воздействие экстремальных факторов (в частности, интенсивных физических нагрузок) приводит к существенным изменениям как физиологических, так и биохимических показателей, к развитию морфофункциональных изменений) в тканях ОДА и органах.

Экстремальные факторы, нарушающие гомеостаз (форсированные физические нагрузки, гипоксия, иммобилизация, лишение сна, трансконтинентальные перелеты), вызывают в организме комплекс специфических нарушений и неспецифических адаптивных реакций, изменение деятельности ЦНС, эндокринных желез, метаболических процессов и снижение иммунитета. Специфический компонент определяется характером действующего раздражителя, а неспецифический сопровождается развитием общего адаптационного синдрома Г. Селье, который возникает под воздействием любых чрезвычайных раздражителей и характеризует перестройку защитных систем организма.

Патологические явления, возникающие на основе перегрузок тканей ОДА, проявляются в виде гипоксии и гипоксемии, гипертонуса мышц, нарушения микроциркуляции и других отклонений

Перегрузки (хроническое утомление) ОДА могут иметь разное происхождение: постоянное увеличение тренировочных усилий, не соответствующее функциональным возможностям спортсмена, его возрасту и полу; резкое повышение интенсивности нагрузок; изменение техники спортивного навыка без достаточной адаптации организма; наличие в ОДА слабого звена (недостаточно тренированного, в котором происходит концентрация напряжений.

Пока еще трудно сказать, в каких звеньях организма изменения первоначальные, а в каких - вторичные. Однако имеющиеся данные уже позволяют полагать, что обратимые функциональные и морфологические изменения в ОДА, возникающие в результате перегрузок, имеют место у высококвалифицированных спортсменов, испытывающих большие по объему и интенсивности физические нагрузки.



Внешняя среда производит изменения не непосредственно в тех органах и тканях, на которые она влияет, а опосредованно, через ряд систем организмами, в первую очередь, через нервную. Организм реагирует на воздействие внешней среды как целое, деятельность одних органов и систем теснейшим образом связана с функцией других.

Адаптация к физическим нагрузкам во всех случаях представляет собой реакцию целого организма, однако специфические изменения в тех или иных функциональных системах могут быть выражены в различной степени.

Во время тренировок, когда происходит адаптация организма к физическим нагрузкам, имеют место морфофункциональные изменения в тканях ОДА. Эти изменения сохраняются в организме и после их окончания. Накапливаясь в течение длительного времени, они постепенно приводят к формированию более экономного типа реагирования микрососудов.

Специфика тренировки в том или ином виде спорта обусловливает дифференцированные преобразования тканей ОДА и микрососудов. Поэтому показатели состояния системы микроциркуляции могут служить важным диагностическим критерием приспособленности организма к тому или иному виду физической деятельности, а также характеризовать функциональное состояние сердечно-сосудистой системы и ОДА.

Большие физические нагрузки вызывают значительные сдвиги в морфологических структурах, в химии тканей и органов. У спортсменов патологические сдвиги в процессе выполнения физических упражнений происходят только при нагрузках, граничащих с предельными возможностями. Это может случиться или на начальном этапе тренировки с применением больших нагрузок без учета принципа постепенного увеличения их или же при резком несоответствии возможностей спортсмена тренировочным нагрузкам.

Kак показали многолетние исследования автора, занятия спортом приводят к нарушению гомеостатического равновесия в организме. Это справедливо особенно относительно современного спорта, характеризующегося большим объемом и чрезмерной интенсивностью нагрузок (2-4 разовые тренировки в день) в течение многих лет. При этом избыточные нагрузки и стресс играют роль этиологического и осложняющего факторов в возникновении повреждения тканей и заболеваний.

Экспериментальные и клинические исследования свидетельствуют, что гипоксия оказывает влияние на системы, ответственных за транспортировку кислорода и иммунитет. Гипоксия, нарушение микроциркуляции и метаболизма тканей являются одним из факторов, ответственных за срыв функционирования иммунной системы и возникновение повреждений и заболеваний ОДА у спортсменов.

Травма ОДА вызывает появление комплекса метаболических реакций. Kроме того, признаки нарушения метаболизма тканей ОДА, так же, как и других органов и систем, могут быть вторичными по отношению к изменению нервной и гормональной регуляции.

В месте повреждения происходит разрастание соединительной ткани, что приводит к нарушению микроциркуляции, а следовательно и транспортировки метаболитов и кислорода из русла микроциркуляции к мышечным волокнам. Kоличество функционирующих капилляров при этом уменьшается, доставка кислорода затрудняется, нарушается метаболизм тканей.

При посттравматических контрактурах внесуставные препятствия часто обусловлены некрозами, возникающими как непосредственно вследствие повреждения, так и из-за нарушений микроциркуляции с последующим замещением мышечной ткани рубцом.

Экспериментально выявлено, что возобновление движений в ранее иммобилизованном суставе обусловливает разрывы коллагеновых волокон, повреждения сосудов, очаги свежих кровоизлияний. Чем резче возобновляются движения, тем более тяжелые изменения возникают в капсуле сустава, особенно в периартикулярных тканях.

Среди многих факторов, обусловливающих возникновение деформирующего артроза, немаловажное значение имеет функциональное перенапряжение опорно-двигательного аппарата (ОДА). Основной причиной перенапряжения сустава является большая нагрузка на него в результате многократного повторения однотипных движений, превышающих физиологические возможности.

Выявлено, что при интенсивных физических нагрузках в мышцах снижается содержание АТФ, KрФ, гликогена и увеличивается количество лактата и мочевины в крови. Во время подготовки к соревнованиям в крови спортсмена повышается уровень кортикостероидов, что подавляет иммунитет.

При интенсивных физических нагрузках у спортсменов может быть срыв адаптационно-приспособительных механизмов, что проявляется в увеличении случаев инфекционных заболеваний, росте травматизма и заболеваемости опорно-двигательного аппарата.

В процессе тренировок и особенно после соревнований отмечается снижение иммуноглобулинов класса IgG, IgA, IgM. Мышечная деятельность и гипоксия сопровождаются ускорением свертывания крови и усилением ее фибринолитической активности, значительными гематологическими изменениями. Наиболее часто у спортсменов, тренирующихся на выносливость, встречается скрытый дефицит железа, низкий уровень гемоглобина, гематокрита, что может снизить физическую работоспособность и отразиться на результатах выступления.

Существует мнение, что возникновение патологических (в том числе и дистрофических) изменений в мышцах при длительной и интенсивной нагрузке связано с хроническими микротравмами (частичный или полный разрыв) мышечных волокон (Миронова З.С. и соавт., 1982). Возможно, что именно мышечные волокна с дистрофическими характеристиками (вследствие переутомления) оказываются менее устойчивыми к механическому воздействию, то есть травмированию. Последнее может привести к развитию воспалительного процесса, что характерно для некоторых нозологических форм патологии опорно-двигательного аппарата.

Следует, однако, отметить, что в возникновении заболеваний при мышечной перегрузке (переутомлении) определенную роль играют индивидуальные морфологические особенности тех органов и систем, на которые приходится основная нагрузка. Эти особенности могут проявляться, например, в неодинаковых пропорциях медленных и быстрых волокон в одной и той же мышце у разных людей.

Перенапряжение (как процесс) является причиной патологических изменений, которые не следует смешивать с физиологическим изнашиванием тканей, вызванным самой жизнью.

В опытах на животных установлено, что под влиянием физических нагрузок (перегрузок) в мышцах происходят изменения сосудов и мышечных фибрилл. Чрезмерные нагрузки оказывают на ткани деструктивное действие, на фоне развивающихся избыточных напряжений создаются условия, в которых блокируются взаимосвязь основных систем обеспечения тканей: гомеостаза, системы трофических связей и систем регуляции роста и цитодифференцирования. Результатом является разбалансирование морфофункциональных отношений, которое, приняв необратимый характер, может привести к патологии.

Нагрузка до изнеможения на велоэргометре приводит к значительным сдвигам в ультраструктуре различных компонентов мышечного волокна.

Существуют доказательства, что разрыву мышц и сухожилий предшествует артериит, который вызывает местную ишемию или спазм кровеносных сосудов.

Имеются данные и о том, что раннее развитие дистрофических изменений в некоторых мышцах (надостной, подостной и др.) связано с наличием в этой области «бессосудистой зоны».

В мышцах, подвергшихся длительным и предельным нагрузкам, выявляется значительное (в 2-3 раза) замедление местного тканевого кровотока и развитие кислородной недостаточности.

Существенной предпосылкой к развитию микротравматического процесса являются усталость, гипертонус мышц и местные гистохимические изменения (накопление в тканях метаболитов), создающие дисметаболическое состояние, повышающее чувствительность тканей к микротравме.

При повреждениях мышц наблюдается несинхронность развития очагов и их морфологическая неоднородность. Выраженная стадийная и типовая гетерогенность повреждений является следствием функциональной и морфологической гетерогенности мышц.

Доказано, что под действием раздражителей из мышц могут выходить белки, аминокислоты, креатин и другие вещества, и процесс этот сопровождается развитием контрактуры.

Экспериментальное растягивание мышечно-сухожильных элементов свидетельствует, что отрыв происходит в месте прикрепления сухожилия. Поскольку скорость метаболизма сухожилий низка и соответственно, снижен кровоток, капиллярное ложе со временем уменьшается. Оно уменьшается также после шести недель перерыва в физической активности.

Ухудшение кровоснабжения и перенапряжение сухожилия могут привести к заболеванию. При этом приток крови к сухожилию нарушается вследствие сдавления сосудов, а венозный отток снижается или совсем прекращается из-за натяжения мышц.

В некоторых ситуациях тяга более 1000 кг не вызывает разрыва ахиллова сухожилия. Сухожилие обычно разрывается в точке наихудшего кровоснабжения, и наиболее часто это бывает у лиц старше 30 лет, особенно у плохо тренированных, и у тех, кто внезапно возобновил интенсивные тренировки или участие в соревнованиях.

Постоянное механическое раздражения кожи и подлежащих тканей в зоне залегания синовиальной сумки рано или поздно приводит к ее асептическому воспалению, к образованию серозного или серозно-геморрагического бурсита.

Функциональное перенапряжение в отдельных мышечных группах и сопутствующее ему утомление, протекающее с накоплением недоокисленных продуктов обмена веществ в работающих мышцах, приводят к изменению коллоидного состава тканей, нарушениям кровообращения, что клинически выражается болевыми ощущениями и повышенной чувствительностью соответствующих мышц. В этой фазе коллоидных реакций еще нет отчетливых органических изменений в мышцах, и возвращение к норме легко осуществимо с помощью массажа с оксигенотерапией, холодового электрофореза, гидрокинезотерапии с криомассажем и др.

Систематические большие физические нагрузки ведут к гипертрофии костной ткани. При чрезмерной физической нагрузке на кость, в результате несоответствия между прочностью костной ткани и прилагаемой к ней силы, может развиться патологическая перестройка кости, описываемая в литературе терминами «перелом от перегрузки», «перелом от утомления», «маршевый перелом» и т.д. Нарушение микроциркуляции паравертебральных тканей (мышц) ведет к гипоксии и возникновению остеохондроза позвоночника.

При напряженной мышечной работе происходит резкое усиление деструктивных процессов в работающих органах, что сопровождается появлением аутоантигенов, индуцирующих сенсибилизацию иммунокомпетентных тканей, лимфоцитоза.

Наблюдения показывают, что после интенсивных физических тренировок в моче спортсменов нередко определяются белок и эритроциты (гематурия). Иногда развивается острая почечная недостаточность.

Физические нагрузки, не соответствующие функциональным возможностям, приводят к перегрузкам локомоторного аппарата, изменению метаболизма и гомеостаза, что в конечном итоге вызывает патологические изменения в тканях опорно-двигательного аппарата. Kроме того, гипоксия и нарушение микроциркуляции замедляют процессы репаративной регенерации тканей и восстановления спортивной работоспособности.

У бегунов на средние дистанции нередко возникают боли в правом подреберье. Kлиника печеночного болевого синдрома характеризуется ноющей болью, ощущением распирания в правом подреберье. Частота этого синдрома колеблется в от 1,3% до 9,7% случаев и зависит от квалификации спортсмена, его возраста и пола. В большей степени печеночный болевой синдром встречается у слабо подготовленных спортсменов, у людей с хроническим холециститом, холангитом, дискинезией желчных путей. Возникновение болей в правом подреберье связывают с гипоксией, нарушением гемодинамики, увеличением количества гистамина и ацетилхолина в крови и другими факторами.

С помощью реогепатографии и радиоизотопной лимфографии, выявлены гемодинамические расстройства в форме холангита и дискинезии желчных путей. Спортсменам с этими отклонениями интенсивные тренировочные нагрузки противопоказаны, так как они являются провоцирующим фактором возникновения печеночного болевого синдрома.

Избыток катехоламинов (адреналина и норадреналина) способствует развитию гипоксии и даже аноксии миокарда и вызывает значительные изменения в процессе обмена веществ.

Отмечено, что при гипоксии нарушается мобилизация гликогена, что обусловлено падением запасов катехоламинов в миокарде и снижением адренореактивности сердца.

Гипоксемия и гипоксия являются наиболее частой причиной возникновения дистрофии миокарда у спортсменов. Недостаток кислорода нарушает процессы окислительного фосфорилирования, что приводит к переключению обмена сердечной мышцы на анаэробный гликолиз. В результате пируват, образовавшийся при расщеплении гликогена, превращается не в ацетил-KоА, а в лактат.

В условиях анаэробного гликолиза количество АТФ резко снижается. Дефицит энергии увеличивается в связи с нарушением утилизации АТФ из-за нарастающего ацидоза. Недостаток ацетил-KоА, необходимого для энергообразования, частично компенсируется усиленным притоком в сердечную мышцу жирных кислот, при окислении которых этот кофактор образуется. Однако вследствие дефицита АТФ развивается повреждение митохондрий, b-окисление жирных кислот нарушается, и липиды накапливаются в кардиомиоцитах.

Чрезмерные физические нагрузки способствуют развитию атеросклероза из-за нарушения метаболизма в сердечной мышце. Известно, что спортсмены тренируются в режиме хронического утомления, гипоксемии и гипоксии тканей, нарушения метаболизма (накопление в крови лактата, мочевины, гистамина, ацетилхолина и др.).

В патогенезе поражения сердца у спортсменов лежат такие факторы как гипоксемия, нарушение метаболизма, раннее образование атеросклероза, спазм коронарных сосудов и другие факторы. Дистрофия миокарда является наиболее частым заболеванием сердца у спортсменов. Острая сердечная недостаточность (инфаркт миокарда), травмы, прием перед стартом стимуляторов, высокая влажность, температура воздуха в период проведения соревнований - все эти факторы при определенных условиях могут привести к смертельному исходу.

Таким образом, хронические перегрузки, перенапряжения при занятии спортом повышают угрозу травмирования и возникновения посттравматических заболеваний. Поэтому очень важно раннее применение профилактических и лечебных средств, которые помогут нормализовать крово- и лимфообращение, окислительно-обменные процессы и т.д. Даже самые «легкие травмы» порой приводят к осложнениям и заболеваниям, что, естественно, влияет на работоспособность и спортивные результаты.

Профилактика и лечение повреждений и заболеваний опорно-двигательного аппарата сегодня представляет собой важную медико-социальную задачу, поскольку повреждения и заболевания обусловливают в спорте высокий процент нетрудоспособных лиц.

В условиях экстремальных физических нагрузок на спортсмена значение профилактики повреждений и перегрузок резко возрастает. Именно поэтому профилактические и реабилитационные мероприятия входят в комплекс подготовки спортсменов. В различных разделах этой книги представлены современные средства восстановления спортивной работоспособности и снятия утомления у спортсменов.

Перенапряжение опорно-двигательного аппарата.

Мышц;
- сухожилий;
- суставного хряща;
- костной ткани.
Проявлениями хронического физического перенапряжения мышц являют-ся:
- острый мышечный спазм;
- миалгия (миозит);
- миогелоз;
- миофиброз;
- нейромиозит.
Острый мышечный спазм - патологическое состояние, характеризующееся возникновением острой судорожной боли при попытке возобновить движение (необходимо дифференцировать от надрыва мышцы).
При прощупывании - болезненное употнение участка мышцы или болезненный тяж по ходу мышцы.
Причины - неполноценная разминка, переохлаждение, остывание после раз-чинки, простудные заболевания.
Тактика тренера: прекратить тренировку, захватить спазмированную мышцу двумя руками, растянуть ее и после снятия спазма легко отмассировать. Вечером - сухое тепло.
Миалгия (миозит) - патологическое состояние, основным проявлением которого бывает боль в мышце ломящего или стреляющего характера, сначала только при движении, а затем и в состоянии покоя.
Кроме боли, наблюдаются снижение четкости движений и их вынужденное ограничение, связанное с усилением боли.
При прощупывании мышца болезненна, в ней определяются отдельные утолщенные пучки мышечных волокон.
В основе миалгии могут быть дистрофические (тогда речь идет об истинной миалгии) или воспалительные (миозит) изменения в мышце.
При миалгии процесс обратим.

Физическая Работоспособность.

Работоспособность

Это свойство человека в течение заданного времени и с определенной эффективностью выполнять максимально возможное количество работы.
Работоспособность человека зависит от уровня его подготовки, степени закрепленности навыков и опыта (техника и стаж занятия спортом), его физического и психического состояния и других причин и обстоятельств.

Спортивная форма

Это состояние организма, термин обозначает готовность спортсмена к выполнению того или иного двигательного действия в максимальном темпе, длительности и т. п. Он носит собирательный характер, т. е. составляющими являются физические, технические, функциональные, тактические, психологические и другие качества. Спортивная форма может быть хорошей, если тренировки проходят на фоне полноценного здоровья спортсмена. Только здоровый спортсмен может переносить большие по объему и интенсивности нагрузки, которые являются факторами стабилизации спортивной формы, функционального состояния.
В поддержании гомеостаза и его регуляции важнейшая роль принадлежит нервной системе, железам внутренней секреции, особенно гипоталамо-гипофизарной и лимбической системам мозга.
В условиях спортивной тренировки, когда происходит долговременная адаптация организма к физическим нагрузкам, имеют место морфофункциональные сдвиги в состоянии системы микроциркуляции крови. Эти изменения, возникающие непосредственно во время мышечной деятельности, сохраняются в организме как следствие и после ее окончания. Накапливаясь в течение длительного времени, они постоянно приводят к формированию более экономного типа реагирования микрососудов. Специфика тренировки в том или ином виде спорта обусловливает дифференцированные преобразования микрососудов.
Исследования показывают, что большие (чрезмерные) физические нагрузки способствуют значительным сдвигам в морфологических структурах и в химизме тканей и органов, а также ведут к срыву адаптационно-приспособительных механизмов, что проявляется в возникновении инфекционных (ОРВИ, грипп и др.) заболеваний и повреждений опорно-двигательного аппарата.

Утомление. Усталость. Перетренированность

Утомление

Особый вид функционального состояния человека, временно возникающий под воздействием продолжительной или интенсивной работы и приводящий к снижению ее эффективности. Утомление проявляется в уменьшении силы и выносливости мышц, в возрастании затрачиваемой энергии при выполнении одной и той же работы, ухудшении координации движений, в замедлении скорости переработки информации, ухудшении памяти, затруднении процесса сосредоточения и переключения внимания и пр. Мерилом утомления являются изменения количественных и качественных показателей работы, а также физических функций во время работы или в ответ на предъявление специальных тестов.
Хорошим средством профилактики утомления при любых видах деятельности является повышение мотивации труда и физической подготовленности.

Усталость

Субъективное ощущение утомления, отражает множиство изменений биохимических, физических и психо-физиологических функций, появляющихся во время длительной или интенсивной работы. Вызывает желание либо прекратить ее, либо снизить нагрузку.

Утомляемость

Особенность организма в целом или отдельных его частей быть подверженными утомлению.
Глубина развивающегося утомления при одной и той же нагрузке зависит от степени адаптации человека к какому-либо виду деятельности и его тренированности, физического и психического состояния работающего, уровней мотивации и нервно-эмоционального напряжения. При физическом труде, тренировках любой тяжести (интенсивности), а также умственном труде утомляемость тем больше, чем ниже уровень общей физической работоспособности.

Нервно-эмоциональное напряжение.

Особое состояние, возникающее в процессе работы или общения, где доминирует эмоциональная составляющая, придающая повышенную оценку всем или каким-либо элементам деятельности. Нервно-эмоциональное напряжение характеризуется высоким тонусом ЦНС и повышенной активностью гормонального звена регуляции.

Умственное утомление.

Проявляется снижением эффективности интеллектуального труда, ослаблением внимания (главным образом, человеку трудно сосредоточиться), замедлением мышления.

Физическое утомление.

Выражается нарушением функции мышц: снижением скорости, силы, точности, согласованности и ритмичности движений и т. д. Уменьшается работоспособность.

Хроническое утомление.

При постоянном утомлении (переутомлении) возникают выраженные дистрофические и деструктивные изменения части мышечных волокон. Одной из причин их появления является гипоксия или нарушение микроциркуляции тканей ОДА.
Хроническое утомление, потеря эластичности мышц (имеет место гипертонус, мышечный дисбаланс и т. п.), мышечные боли, эпизодические спазмы мышц являются предполагающим фактором возникновения травм опорно-двигательного аппарата.
При хроническом утомлении в тканях происходит недоокисленных продуктов обмена веществ, а это, в свою очередь, приводит к изменению коллоидного состава тканей, нарушениям кровообращения, что проявляется повышенной чувствительностью и болью в мышцах. В этой фазе колоидных реакций еще не отмечается отечественных органических изменений в мышцах и возвращение их к норме легко осуществимо. Следует применить криомассаж, сегментарный массаж, гидропроцедуры, фонофорез на фоне снижения физических нагрузок, особенно скоростных и скоростно-силовых.
Нерациональное применение физических нагрузок (тренировок) может привести к функциональным перегрузкам тканей ОДА, а в дальнейшем, если тренировки будут проводиться в таком же режиме, они будут способствовать возникновению травм и заболеваний ОДА.
Большие физические нагрузки при тренировках в среднегорье и зонах жаркого и влажного климата приводят к обострению хронических заболеваний или к перенапряжению кардиореспираторной системы.
При интенсивной мышечной работе расход энергии резко возрастает, в связи с чем более интенсивно протекает процесс окисления веществ в мышечной ткани, увеличивается доставка кислорода к скелетным мышцам. Если кислорода для полного окисления веществ не хватает, то оно происходит частично и в организме накапливается большое количество недоокисленных продуктов, таких, как молочная и пировиноградная кислоты, мочевина и др. Это приводит к отклонению ряда важных констант внутренней среды организма, что не позволяет ему продолжать мышечную деятельность.

Переутомление и перетренированность

Это симптомы невроза, который характеризуется наличием соматических и вегетативных нарушений.
Невротические реакции обычно возникают при монотонных (однообразных), длительных, многообразных и многоразовых тренировках (2-3 раза в день), приводящих к постоянному эмоциональному напряжению.
Переутомление и перетренированность характеризуются ухудшением нервно-психического и физического состояния, снижением спортивной и общей работоспособности. В большинстве случаев переутомление и перетренированность наслаиваются друг на друга, давая симптомокомплекс нарушений деятельности организма.
Переутомление проявляется прежде всего в ухудшении спортивной работоспособности, прекращении роста достижений, несмотря на интенсивные тренировки. Ухудшаются общая работоспособность, сон, усиливаются потливость при выполнении физической нагрузки, сердцебиение (тахикардия), повышается содержание в крови мочевины, нередко имеют место изменения на ЭКГ, снижатся пневмотонометрический показатель, отражающий функцию дыхательной мускулатуры, ЖЕЛ, и другие показатели. Переутомление нарушает слаженность взаимодействия между корой головного мозга, нижележащими отделами нервной системы и внутренними органами.
Перетренированность развивается при систематическом предъявлении спортсмену очень сложных двигательных и такических заданий, сочетающихся с большими физическими нагрузками и недостаточным отдыхом. При перетренированности тмечаются повышенная возбудимость, неустойчивость настроения, нежелание тренироваться, вялость. Преобладание процессов торможения, в свою очередь, замедляет восстановительные роцессы. Ухудшение спортивных достижений и снижение портивной работоспособности - основной симптом перетренированности. Спортсмены высокой квалификации постоянно тренируются на фоне хронического утомления, поэтому часто возникают травмы и обостряются заболевания ОДА.

Необходимы постоянный врачебный контроль за функциональным состоянием спортсмена, выявление первых (начальных) признаков переутомления. Особо контролируются состояние здоровья (артериальное давление, частота сердечных сокращений, аппетит, потливость при выполнении физической нагрузки, сон и др.), функциональное состояние (биохимические и инструментальный методы исследования) на фоне проводимых интенсивных, объемных тренировочных нагрузок.
Ортоклиностатическая проба, биохимические показатели (особенно лактат, мочевина в крови) являются первыми признаками переутомления, и если не внести коррективы в тренировочный процесс, то возникают более серьезные морфофункциональные изменения в тканях ОДА, сердечной мышце и других органах и системах.

Адаптация. Адаптативные процессы в тренировке.

Работоспособность при постоянном объеме тренировки существенно возрастает уже в начальном периоде. В дальнейшем работоспособность повышается еще в некоторой степени, пока не достигнет стабильного устойчивого уровня (плато) - предела работоспособности. И дальнейшее повышение работоспособности возможно лишь в том случае, если нарастает объем тренировок. Стабильный уровень, который достигается путем предельного увеличения объема тренировок, отражает максимум работоспособности; продолжение тренировки не дает большего эффекта. Эта временная кривая применима в принципе ко всем формам тренировки. Физиологические сдвиги, вызванные адаптацией в период тренировки, могут изменяться в обратном направлении после ее прекращения.
Процессы адаптации, связанные с тренировкой, существенно варьируют в зависимости от ее содержания. Может происходить адаптация скелетных мышц (метаболические изменения или увеличение площади поперечного сечения), сердца или дыхательной системы (увеличение максимальной дыхательной способности) либо нервной системы (внутри- и межмышечная координация). Большая часть этих изменений очень существенна для повышения работоспособности.
Для того, чтобы оценить степень адаптации, необходимо знать исходное состояние тренированности. Степень адаптации к физической работе имеет индивидуальный характер. У одного и того же человека она зависит от характера и величины (объема) физической нагрузки.

Тренировка на выносливость вызывает отчетливые изменения многих физиологических показателей.
Из них наиболее резко выражено увеличение сердечного объема (дилатация сердца) и массы сердца (гипертрофия мускулатуры стенки). У спортсменов, тренирующихся на выносливость, происходит также отчетливое повышение жизненной емкости легких (ЖЕЛ). Главный фактор в работоспособности, требующей выносливости, - это адекватное поступление кислорода в мышцы, которое определяется максимальным сердечным выбросом.

Вы еще не читали этого?! Зря вы так...

Сохранение здоровья подрастающего поколения в настоящее время относится к числу наиболее актуальных проблем. Эволюционное развитие человека предопределило нормальное функционирование всех его органов и систем в условиях активной двигательной деятельности. Организм человека развивается и формируется в процессе постоянной двигательной деятельности, требующей значительного мышечного напряжения. Известно, что физическая нагрузка является важнейшим фактором жизнедеятельности, без которого не могут полноценно развиваться и совершенствоваться все физиологические системы организма (Беляев, 1995; Вальсевич с соавт., 1995; Граевская, 1996; Сонькин с соавт., 1996; Петленко, 1998; Вальсевич, 2000). Кроме того, физические нагрузки являются естественным стимулом не только для нормальной жизнедеятельности, но и биологического развития, особенно в ранние периоды онтогенеза и в пубертатный период (Сухарев, 1991; Алифанова, 2002; Тамбовцева, 2002). Особенности двигательных действий и закономерности формирования двигательных умений и навыков во многом предопределяют дидактические особенности физического воспитания.

Известно, что физическое развитие детей и подростков - непрерывный процесс и на каждом возрастном этапе оно характеризуется определенным комплексом связанных между собой и с внешней средой морфофункциональных свойств организма. С наступлением периода полового созревания в растущем организме происходят значительные перемены в длине, массе, составе и пропорциях тела, в функционировании различных органов и систем. В костной ткани продолжается процесс окостенения, который в основном завершается в юношеском возрасте. К 13 годам завершается окостенение пястных и запястных отделов рук, затем фаланг пальцев ног (у девушек к 13-17 годам, у юношей к 15-21 году) (окостенение фаланг пальцев рук оканчивается к 19-21 году). Незавершенный процесс окостенения позвоночника может привести у подростков к различным его повреждениям при больших нагрузках. Окончательно процесс окостенения завершается к 25-летнему возрасту. Особенно заметным является "пубертатный скачок роста" - резкое увеличение длины тела, в основном за счет быстрого роста трубчатых костей. У девочек он наступает в среднем около 13 лет, когда ежегодный прирост у них достигает 8 см, а у мальчиков - в 14 лет, составляя до 10 см в год. При этом у подростка непривычно вытягиваются конечности, но отстает рост грудной клетки. Временно нарушаются привычные пропорции тела и координация движений. Проявляются избыточность или дефицит массы тела (Обреимова, Петрухин, 2000).

В возрасте 8-18 лет значительно изменяется длина и толщина мышечных волокон. Происходит созревание быстрых утомляемых гликолитических мышечных волокон и с окончанием переходного периода устанавливается индивидуальный тип соотношения медленных и быстрых волокон в скелетных мышцах. Подростки в этот период неловки и угловаты. Движения их недостаточно координированы. Во всех их действиях наблюдается обилие лишних движений, соответственно значительно повышаются энерготраты на мышечную и познотоническую работу.

Постепенное и поэтапное упрочение костей, связочного аппарата и мышечной массы у подростка делает необходимым постоянно следить за формированием его правильной осанки и развитием мышечного корсета, избегать длительного использования асимметричных поз и односторонних упражнений, чрезмерных отягощений. Неправильное соотношение тонуса симметричных мышц приводит к асимметрии плеч и лопаток, сутулости и прочим функциональным нарушениям осанки. В среднем школьном возрасте нарушения осанки встречаются в 20-30% случаев, искривления позвоночника - в 1-10% случаев. У девочек и девушек осанка является более прямой, чем осанка мальчиков и юношей (Анастасова с соавт., 2000).

Созревание опорно-двигательного аппарата и центральных регуляторных механизмов обеспечивает развитие важнейших качественных характеристика двигательной деятельности. На средний и старший школьный возраст приходятся сенситивные периоды развития силы, быстроты, ловкости и выносливости, однако, в последние годы характерной особенностью современного образа жизни подростков является уменьшение объема двигательной активности, снижение мышечных затрат в сочетании с нервно-психическими перегрузками (Любомирский с соавт., 1991; Ямпольская, 2000; Рубанович, 2004). Взаимосвязь между двигательной активностью и гармоничным физическим развитием и здоровьем особенно существенно проявляется в период интенсивного роста и полового созревания (Аршавский, 1975; Корниенко, Сонькин, 1991; Айзман, 1994; Белова, 2004).

Подростковый возраст обладает большими потенциальными возможностями для совершенствования и гармоничного развития и физическая активность играет важную роль в данном процессе (Шедрина, 2003). Под влиянием систематических занятий различными видами спорта значительно улучшается физическое развитие, активируется работа всех органов и систем, повышается работа организма, направленная на мобилизацию функциональных возможностей (Алифанова, 2002). Чем больше движений совершает ребенок в повседневной жизни, в процессе учебной деятельности, во время занятий физической культурой, тем больше образуется временных связей между двигательными и другими анализаторами и связей внутри самого двигательного анализатора. Во время движения происходит раздражение проприорецепторов скелетных мышц, интерорецепторов внутренних органов и рефлекторно через ЦНС стимулируются жизненные процессы в клетках, тканях, органах, составляющих различные функциональные системы организма. Повышается обмен веществ и как следствие - кислородный запрос. Усиливаются катаболизм и анаболизм в субклеточных структурах, что приводит к обновлению клеток и росту их биоэнергетического потенциала. Мощная афферентация, поступающая в процессе двигательной деятельности от проприорецепторов мышц, суставов, связок, рецепторов внутренних органов, направляется в кору больших полушарий. На этой основе кора формирует функциональную систему, объединяющую отдельные структуры головного мозга, все моторные уровни ЦНС и избирательно мобилизирующую отдельные мышечные группы. Одновременно нейрогенное звено управления воздействует на центры, регулирующие кровообращение, дыхание, другие вегетативные функции, гормональное звено. Научно обоснованная двигательная деятельность в виде занятий физической культурой способствует правильному формированию осанки, адекватному развитию мышечного "корсета" в период интенсивного роста, особенно в пубертатный период, характеризующийся ростовым скачком (Покровский, Коротько, 2003).

В процессе моторного развития нервные окончания и мышцы созревают в направлении сверху вниз и от центра к периферии. В результате этого подросток может контролировать деятельность нижних частей тела, приобретать двигательные навыки. При малоподвижном образе жизни или недостаточных нагрузках двигательных функций моторное развитие замедляется. Однако костно-мышечная система подростка очень чувствительна, поэтому каждое новое умение представляет собой конструкцию, которая возникает по мере того, как он реорганизует имеющиеся навыки в более сложные системы действий. Поначалу эти движения могут быть малоэффективными и нескоординированными. По прошествии определенного времени такие конструкции реорганизуются, регулируются самосознанием подростка, и движения становятся плавными, скоординированными (так происходит, например, когда человек учится кататься на коньках) (Казанская, 2008).

В развитии костно-мышечной системы мальчиков и девочек имеются различия. У мальчиков-подростков доля мышечной ткани больше, а жировой меньше, чем у девочек. Поэтому они лучше выполняют задания, связанные с физической выносливостью и силой. Однако известно, что иногда девочки-подростки продолжают расти в период между 12-17 годами, прибавляют в весе, тем не менее, мальчики остаются сильнее. Иногда наблюдается и другой факт: девочки, продолжая физические тренировки и занятия спортом, не только достигают силы и выносливости мальчиков, но и опережают их в этом. Правда, они начинают приобретать некоторые физические признаки, характерные для мужчин (Зимкин, 1956).

У подростков, систематически занимающихся спортом, в отличие от их сверстников, которые ограничиваются занятиями на уроках физической культуры, развитие физических качеств происходит более гармонично и на значительно более высоком уровне. Показатели развития двигательной функции у детей 12-14 лет, занимающихся спортом, могут изменяться в диапазоне от 5% до 25% в зависимости от использования различных средств физического воспитания (Брянкин с соавт., 1977; Гужаловский, 1979; Платонов, Булатова, 1992).

Следует также отметить, что у подростков, регулярно занимающихся спортом, прирост показателей развития физических качеств в течение трех лет в два раза превышает средние величины прироста, характерные для учащихся, не занимающихся систематически спортом (Бондаревский, 1983; Алабин с соавт., 1993; Губа, 1998).

Систематические, правильно дозированные физические нагрузки оказывают также непосредственное влияние на развитие основных свойств нервной системы подростков. У детей-спортсменов уже через 6 месяцев занятий повышается лабильность нервной системы. Повышение лабильности зависит от конкретной формы активности, наиболее интенсивно она развивается при занятии футболом, сравнительно меньше при занятии гимнастикой и еще меньше при занятии плаванием (Салатинян, 1977).

Следует также отметить, что занятия физической культурой усиливают у девочек и мальчиков чувство физической состоятельности, формируют положительный образ тела, приводят к появлению целеустремленности, выдержки и напористости (Матвеев, 1999).

Под влиянием продолжительного ограничения мышечной активности (гиподинамии) наблюдается нарушение энергетических и пластических процессов в костях и сердечной мышце, изменяется состав костей, нарушается белковый, фосфорный и особенно кальциевый обмен. Аварийная фаза адаптации к гиподинамии характеризуется первичной мобилизацией реакций, которые компенсируют недостаток двигательных функций. К реакциям организма на гиподинамию привлекается, прежде всего, нервная система с ее рефлекторными механизмами. Взаимодействуя с гуморальными механизмами, нервная система организует защитные реакции адаптации на действие гиподинамии. К ним относится возбуждение симпато-адреналовой системы, которое связано у большинства с эмоциональным напряжением. Такая последовательность реакций организма предопределяет частичную кратковременную компенсацию нарушений кровообращения в виде возрастания сердечной деятельности, повышения сосудистого тонуса и кровяного давления, усиления дыхания (вентиляции легких). Выделение адреналина и возбуждение симпатического отдела вегетативной нервной системы способствуют повышению уровня катаболизма в тканях. Но эти реакции кратковременны и быстро угасают, если гиподинамия продолжается. Дальнейшее развитие гиподинамии приводит к снижению метаболизма. Уменьшается выделение энергии и интенсивность окислительных процессов в тканях. В крови снижается содержание двуокиси углерода, молочной кислоты и других продуктов метаболизма, которые обычно стимулируют дыхание и кровообращение (Ямпольская, 2000).

Продолжительная гиподинамия существенно ухудшает функциональное состояние сердца, что проявляется в повышении частоты сердечных сокращений, изменении фазовой структуры сердечного цикла, снижении объема крови в процессе каждой систолы. Постепенно уменьшается количество крови, которое циркулирует по сердечно-сосудистой системе, происходит перераспределение ее массы. Относительное увеличение внутригрудного объема крови при снижении гидростатического давления включает рефлекторные механизмы, которые способствуют продукции антидиуретического гормона, увеличению диуреза и потере плазмы. Изменение водного обмена объединяется с потерей электролитов, особенно натрия и калия. Это, в свою очередь, влияет на функциональную активность нервных тканей (Дубровский, 1989; Новиков, 2003).

Выявлено, что при гиподинамии происходит непрерывная потеря организмом кальция. Это связано с тем, что при уменьшении нагрузки на костную систему со стороны мышечно-связочного аппарата, при длительном ограничении физической подвижности, развивается относительная порозность (разреженность) костной ткани. При этом выявлено, что дополнительное введение в организм кальция вместе с пищей малоэффективно, так как нарушения физических механизмов, регулирующих минеральный, в частности кальциевый, обмен, весьма серьезны (Дубровский, 1989).

Существенная перестройка регуляторных механизмов выводит организм на новый уровень функционирования. Гиподинамия характеризуется обедненностью афферентной стимуляции клеток головного мозга, что приводит к преобладанию в них тормозных процессов и снижению их работоспособности. Развивается выразительная астенизация функций центральной нервной системы, снижается умственная работоспособность, повышается утомляемость, слабеет память, затрудняется логическое мышление, происходят другие нарушения. В данном случае ухудшается также подвижность нервных процессов, которая свидетельствует об общем снижении тонуса центральной нервной системы (Чумаков, 1997).

В связи с вышесказанным, необходимо отметить, что в последние годы в нашей стране в целях профилактики гиподинамии детей и подростков создаются все лучшие условия для занятий спортом, активно ведется пропаганда здорового образа жизни среди населения и, как следствие, постепенно начинает развиваться тенденция к массовости физической культуры и спорта. При этом известно, что разные виды спорта по-разному влияют на развитие постуральной системы человека. В некоторых видах спорта (гимнастика, борьба, черлидинг и др.), степень развития функции равновесия является одним из важнейших критериев профессионального отбора и физической подготовленности спортсменов, например, в таких видах спорта, как гимнастика, борьба, черлидинг, и др. Необходимо отметить, что существует классификация видов спорта по характеру их воздействия на связочно-мышечный и костно-суставный аппараты, степени участия тех или иных групп мышц в работе и особенностям спортивной рабочей позы при выполнении специфических физических упражнений при занятием симметричными, асимметричными и смешанными видами спорта (Егоров, 1983). При этом ответ на вопрос о влиянии разных видов спорта на развитие функции равновесия в подростковом возрасте в литературе освящен недостаточно. Предполагаемое нами исследование поможет понять степень влияния симметричных видов спорта на особенности развития и совершенствования постуральной системы в подростковом периоде онтогенеза.

Введение………………………………………………………………………..2

1. Выносливость, как физическое средство………………………………….3

2. Выносливость и возраст…………………………………………………….5

3. Методы развития выносливости…………………………………………...6

4. Методика развития выносливости…………………………………………11

Заключение……………………………………………………………………..13

Список литературы…………………………………………………………….14

Введение

Выносливость является важнейшим физическим качеством, отражающим общий уровень работоспособности человека и проявляющимся как в спортивной, так и в повседневной жизни. Выносливость нужно развивать для того, чтобы иметь способность к длительному перенесению каких-либо физических нагрузок, в общем, чтобы как можно дольше не утомиться. Выносливость, это как привычка - привычка тела к определённому количеству нагрузок. Зависимость выносливости естественно зависит от возраста человека, то есть с возрастом она изменяется; есть момент, когда выносливость увеличивается, а потом идёт на спад. Существуют методы и программы развития выносливости. Это различные тренировки, имеющие свои особенности. Естественно, что слабо подготовленному человеку большие нагрузки тренировок не выдержать, поэтому методы применяют разные, иногда индивидуальные.

Выносливость, как физическое средство.

Как говорилось выше, выносливость - это важнейшее физическое качество. Она отражает общий уровень работоспособности человека.

Являясь многофункциональным свойством человеческого организма, выносливость интегрирует в себе большое число процессов, происходящих на различных уровнях: от клеточного до целостного организма. Как выяснилось, ведущая роль в появлениях выносливости принадлежит факторам энергетического обмена и вегетативным системам его обеспечения сердечнососудистой и дыхательной, а также центральной нервной системе.

Выносливость проявляется в двух основных формах:

1) в продолжительности работы на заданном уровне мощности до появления первых признаков выраженного утомления;

2) в скорости работоспособности при наступлении утомления. Так же различают выносливость специальную и выносливость общую.

Специальная выносливость - это способность к длительному перенесению нагрузок, характерных для конкретного вида профессиональной деятельности. Специальная выносливость - сложное, многокомпонентное двигательное качество. Изменяя параметры выполняемых упражнений, можно избирательно подбирать нагрузку для развития и совершенствования отдельных её компонентов. Для каждой профессии или групп сходных профессий могут быть свои сочетания этих компонентов. Специальная выносливость делится на виды:

ü сложно-координированная, силовая, скоростно-силовая и гликолистическая анаэробная работа;

ü статическая выносливость, связанная с длительным пребыванием в вынужденной позе в условиях малой подвижности или ограниченного пространства;

ü выносливость к продолжительному выполнению работы умеренной и малой мощности; выносливость к длительной работе переменной мощности; выносливость к работе в условиях гипоксии (недостатка кислорода);

ü сенсорную выносливость - способность быстро и точно реагировать на внешние воздействия среды без снижения эффективности профессиональных действий в условияхфизической перегрузки или утомления сенсорных систем организма. Сенсорная выносливость зависит от устойчивости и надёжности функционирования анализаторов: двигательного, вестибулярного, тактильного, зрительного, слухового.

Общая выносливость - совокупность функциональных возможностей организма, определяющих его способность к продолжительному выполнению с высокой эффективностью работы умеренной интенсивности и составляющих неспецифическую основу проявления работоспособности в различных видах профессиональной или спортивной деятельности. Проще говоря, если человек повысил свои аэробные способности (они являются основой общей выносливости) в одном виде деятельности (например, в беге), то улучшения скажутся и в другом - в езде на велосипеде, в лыжах, и т.д. Общая выносливость это основа высокой физической работоспособности, которая необходима для успешной профессиональной деятельности.

В зависимости от количества участвующих в работе мышц, выносливость различается на глобальную (3/4 мышечной массы тела), региональную (от 1/4 до 3/4) и локальную (менее 1/4). Глобальная работа вызывает наибольшее усиление деятельности кардио-респираторных систем организма, в её энергетическом обеспечении больше доля аэробных процессов. Региональная работа приводит к менее выраженным метаболическим сдвигам в организме, в её обеспечении возрастает доля анаэробных процессов. Локальная работа не связана со значительными изменениями состояния организма в целом, но в работающих мышцах происходит существенное истощение энергетических субстратов, приводящее к локальному мышечному утомлению. Чем локальнее мышечная работа, тем больше в ней доля анаэробных процессов энергообеспечения при одинаковом объёме внешне выполненной физической работы.

Выносливость и возраст.

Биоэнергетические факторы являются определяющими при проявлениях выносливости, поэтому о динамике её возрастных изменений лучше всего судить именно по метаболическим показателям.

В возрасте от 18 до 25 лет, то есть в период физиологического созревания организма человека и формирования его психической сферы, аэробные и анаэробные возможности человека увеличиваются и достигают наивысшего предела. Затем эти показатели постепенно снижаются, а к 60 годам они уже почти вдвое ниже максимальных. Однако в динамике анаэробных показателей имеются определённые возрастные различия. Наиболее резко меняются с возрастом показатели максимальной анаэробной мощности (МАМ) и гликолитические возможности (по показателям предельной концентрации молочной кислоты в крови). У мужчин МАМ до возраста 20 лет быстро возрастает и остаётся на высоком уровне почти до 30 лет, затем снижается на 12-18% каждые 10 лет. У женщин наблюдается более быстрый прирост этого показателя в юном возрасте, и максимум достигается уже к 18 годам, затем начинает спадать и к 30 годам он падает на 25-30 %, после чего начинает снижаться на 7-8 % каждые 10 лет. Более резко выражена возрастная динамика гликолетических возможностей. У мужчин способность к накоплению молочной кислоты наращивается примерно до 30 лет и до 40 лет сохраняется на высоком уровне, после чего резко снижается примерно на 10-12% каждые 10 лет. У женщин максимальные величины способности к накоплению молочной кислоты в крови наблюдаются до возраста 30 лет, затем снижаются по 11-15% каждые 10 лет. Возрастная динамика максимального потребления кислорода (МПК) у мужчин и женщин аналогична, однако женщины достигают показателей аэробной мощности к 20 годам, а после 25 лет эта способность у них постепенно снижается, а у мужчин наивысшие показатели МПК наблюдаются в 25 лет, и затем равномерно снижаются. Показатели аэробной ёмкости изменяются медленнее. После 30 лет аэробная ёмкость идёт на спад, но у женщин резче, чем у мужчин.

Методы развития выносливости.

Для развития выносливости применяются разнообразные методы тренировки, которые можно разделить на несколько групп: непрерывные и интервальные, а также контрольный (или соревновательный) методы тренировки.

Варьируя видом упражнений (ходьба, бег, лыжи, плавание, упражнения с отягощением или на снарядах, тренажерах и т.д.), их продолжительностью и интенсивностью (скоростью движений, мощностью работы, величиной отягощений), количеством повторений упражнения, а также продолжительностью и характером отдыха (или восстановительных интервалов), можно менять физиологическую направленность выполняемой работы.

Равномерный непрерывный метод заключается в однократном равномерном выполнении упражнений малой и умеренной мощности продолжительностью от 15-30 минут и до 1-3 часов, т.е. в диапазоне скоростей от обычной ходьбы до темпового кроссового бега и аналогичных по интенсивности других видов упражнений. Этим методом развивают аэробные способности. В такой работе необходимый для достижения соответствующего адаптационного эффекта объём тренировочной нагрузки должен быть не менее 30 минут.

Слабо-подготовленные люди такую нагрузку сразу выдержать не могут, поэтому они должны постепенно увеличивать продолжительность тренировочной работы без наращивания её интенсивности. После 3 минут периода врабатывания устанавливается стационарный уровень потребления кислорода. Увеличивая интенсивность работы (или скорость передвижения), интенсифицируют аэробные процессы в мышцах. Чем выше скорость, тем больше активизируются анаэробные процессы и сильнее выражены реакции вегетативных систем обеспечения такой работы, а уровень потребления кислорода поднимается до 80-95% от максимума, но не достигает своих «критических» значений. Это достаточно напряженная для организма работа, требующая значительной напряжённости в деятельности сердечнососудистой и дыхательной систем, проявления волевых усилий.

Изменяя интенсивность (скорость передвижения), воздействуют на разные компоненты аэробных способностей. Например, медленный бег на скорости анаэробного порога применяется как «базовая» нагрузка для развития аэробных возможностей, восстановления после больших объёмов более интенсивных нагрузок, поддержания ранее достигнутого уровня общейвыносливости .

Такая работа доступна людям любого возраста и уровня подготовленности, и обычно выполняется в течение 30-60 минут. Более длительные нагрузки для оздоровительных целей, особенно людям старше 50 лет, в самостоятельных занятиях применять не рекомендуется, так как для этого необходим более тщательный медицинский и педагогический контроль. Увеличивая интенсивность нагрузки (скорость передвижения), увеличивается вклад анаэробных источников энергии в обеспечение работы. Однако возможности организма человека к выполнению непрерывной равномерной и интенсивной работы существенно ограничены (поэтому данныйметод и применяется для развития аэробных возможностей). Продолжительность работы при этом составляет более 10 минут.

Переменный непрерывный методотличается от регламентированного равномерного периодическим изменением интенсивности непрерывно выполняемой работы, характерной, например, для спортивных и подвижных игр, единоборств. В лёгкой атлетике такая работа называется «фартлек» («игра скоростей»). В ней в процессе длительного бега на местности - кросса - выполняются ускорения на отрезках от 100 до 500 м. Такая работа переменной мощности характерна для бега по холмам, или на лыжах по сильно пересечённой местности. Поэтому её широко используют в своих тренировках лыжники и бегуны на средние и длинные дистанции. Она заметно увеличивает напряжённость вегетативных реакций организма, периодически вызывая максимальную активизацию аэробного метаболизма с одновременным возрастанием анаэробных процессов. Организм при этом работает в смешанном аэробно-анаэробном режиме. В связи с этим, колебания скоростей или интенсивности упражнений не должны быть большими, чтобы не нарушался преимущественно аэробный характер нагрузки.

Переменный непрерывныйметод предназначен для развития как специальной, так и общей выносливости и рекомендуется для хорошо подготовленных людей. Он позволяет развивать аэробные возможности, способности организма переносить гипоксические состояния и кислородные «долги», периодически возникающие в ходе выполнения ускорений и устраняемые при последующем снижении интенсивности упражнения. Интервальный метод тренировки заключается в дозированном повторном выполнении упражнений относительно небольшой продолжительности (обычно до 120 секунд) через строго определённые интервалы отдыха.

Этот метод обычно используется для развития специфическойвыносливости к какой-либо определённой работе, широко применяется в спортивной тренировке, особенно легкоатлетами, пловцами. Изменяя такие параметры упражнения, как интенсивность его выполнения, продолжительность, величину интервалов отдыха и количество повторений упражнения, можно избирательно воздействовать как на анаэробные, так и на аэробные компоненты выносливости.

В тренировке, направленной наразвитие скоростной выносливости , целью является исчерпание алактатных анаэробных резервов в работающих мышцах и повышение устойчивости ключевых ферментов фосфагенной системы энергообеспечения.

Для решения этой задачи используют повторение упражнений высокой интенсивности (90-95% от максимума) продолжительностью 10-15 секунд. Обычно выполняется несколько серий таких упражнений по 3-6 повторений в каждой с интервалами отдыха от 1 до 5 минут. Если решаются задачи развития гликолитических анаэробных компонентов выносливости, то обычно постепенно увеличивают продолжительность выполнения упражнений от 15-30 секунд и до 1,5 минут. Если такие упражнения выполняются с интенсивностью 90-95% от максимальной и длительными интервалами отдыха до восстановления, то эффект работы будет направлен на совершенствование гликолитической мощности.

В профессионально-прикладной физической подготовке для совершенствования гликолитической мощности наиболее приемлема продолжительность упражнений 20-35 секунд с интервалами отдыха 5-8 минут. Дозировка: 3-4 повторения упражнений в одной серии. В зависимости от тренированности, выполняют 1-3 серии регламентированной работы. При необходимости совершенствования ёмкости анаэробного гликолиза интервалы отдыха сокращают в связи с максимальными величинами накопления молочной кислоты, и предельными значениями кислородного «долга».

Для адаптации к ней интенсивность выполнения упражнений повышают в процессе тренировок постепенно, интервалы отдыха от 3-5 минут сокращают также постепенно по мере роста тренированности. Логика такой методической последовательности - от упражнений анаэробно-аэробной направленности постепенно перейти к анаэробной гликолитической.

Для совершенствования аэробных возможностей используют многократное повторение упражнения с субмаксимальной (80-90%) интенсивностью, продолжительностью от 10 до 20 секунд и короткими интервалами отдыха. Повторение упражнений, продолжительность каждого из которых не превышает период врабатывания для развёртывания аэробных процессов, в конечном итоге приводит к максимальному увеличению аэробного метаболизма в тканях. С каждым повторением потребление кислорода быстро возрастает в начале упражнения, несколько снижается в период отдыха, затем вновь наращивается. Общая продолжительность упражнения должна составлять от 3 до 6 минут.

Работа в режиме врабатывание-восстановление с резкими перепадами в уровне аэробного метаболизма служит мощным стимулом для совершенствования и синхронизации деятельности систем вегетативного обеспечения. Тренировка в данном режиме способствует повышению аэробной мощности и эффективности. С этой целью упражнение выполняется не менее 8-10 раз через 10-20 секунд отдыха. В «миоглобинной» интервальной тренировке используются упражнения продолжительностью 5-10 секунд высокой, но не максимальной, интенсивности, и столь же короткие интервалы отдыха. Например, серии коротких отрезков бега, плавания или боя с тенью по 10 секунд с 90-95% интенсивностью и интервалами отдыха по 10 секунд. Упражнения выполняются без напряжения, свободно. Во время их выполнения расходуются связанные миоглобином внутримышечные запасы кислорода, которые быстро восполняются в периоды коротких интервалов отдыха.

Метод «миоглобинной» интервальной тренировки способствует развитию аэробной эффективности, и в профессионально-прикладной физической подготовке приемлем при совершенствовании аэробной эффективности для ускоренного передвижения, плавания, рукопашного боя и т.п.

Одной из специфических форм интервального метода является круговая тренировка, заключающаяся в повторении серий нециклических, обычно скоростно-силовых, или общеразвивающих упражнений с фиксированными параметрами интенсивности, продолжительности работы и интервалами отдыха. Организационные особенности метода состоят в одновременном выполнении группой занимающихся комплекса специально подобранных упражнений «по кругу»: каждое упражнение выполняется на определённом месте (станции), а занимающиеся переходят от одной станции к другой («по кругу») до завершения выполнения всего комплекса упражнений.

Повторныйметод заключается в повторном выполнении упражнения с максимальной или регламентированной интенсивностью и произвольной продолжительностью интервалов отдыха до необходимой степени восстановления организма. Этот метод применяется во всех циклических видах спорта (бег, лыжи, коньки, плавание, гребля и т.д.), в некоторых скоростно-силовых видах и единоборствах для совершенствования специальной выносливости и ей отдельных компонентов. Контрольный (соревновательный) метод состоит в однократном или повторном выполнении тестов для оценки выносливости. Интенсивность выполнения не всегда может быть максимальной, так как существуют и «непредельные» тесты.

Уровень развитиявыносливости наиболее достоверно определяется по результатам участия в спортивных соревнованиях или контрольных проверках.

Методика развития выносливости.

Начиная развитие и совершенствование своей выносливости, необходимо придерживаться определенной логики построения тренировки, т.к. нерациональное сочетание в занятиях нагрузок различной физиологической направленности может привести не к улучшению, а, наоборот, к снижению тренированности.

На начальном этапе нужно сосредоточить внимание наразвитии аэробных возможностей одновременно с совершенствованием функций сердечнососудистой и дыхательной систем, укреплением опорно-двигательного аппарата (т.е. на развитии общей выносливости). Эта задача требует определённых волевых усилий, постепенности усложнения требований, последовательности применения средств и систематичности тренировок.

На втором этапе необходимо увеличить объём нагрузки в смешанном аэробно-анаэробном режиме энергообеспечения, применяя для этого непрерывную равномерную работу в форме темпового бега, кросса, плавания и т. д. в широком диапазоне скоростей до субкритической включительно, а также различную непрерывную переменную работу, в том числе, и в форме круговой тренировки.

На третьем этапе в случаях, когда предъявляются повышенные требования к профессионально-прикладной физической подготовке, необходимо увеличить объёмы тренировочных нагрузок за счёт применения более интенсивных упражнений, выполняемых методами интервальной и повторной работы в смешанном аэробно-анаэробном и анаэробном режимах, и избирательно воздействуя на отдельные компоненты специфическойвыносливости .

Если же повышенные требования к уровнюразвития выносливости условиями профессиональной деятельности не предъявляются, то необходимо лишь поддерживать достигнутый её уровень освоенными объёмами тренировочных нагрузок.

Заключение

Выносливость в спорте - это способность организма сопротивляться утомлению во время длительного выполнения спортивных упражнений.

Уровень развития выносливости определяется прежде всего функциональными возможностями сердечнососудистой и нервной систем, уровнем обменных процессов, а также координацией деятельности различных органов и систем. Существенную роль при этом играет так называемая экономизация функций организма. На выносливость вместе с этим оказывает влияние координация движений и силы психических, особенно волевых процессов спортсмена.

Выносливость – это способность совершать работу заданного характера в течение возможно более длительного времени.

Одним из основных критериев выносливости является время в течение которого человек способен поддерживать заданную интенсивность деятельности. Пользуясь этим критерием, выносливость измеряют прямым и косвенным способами.

Прямой способ – это когда испытуемому предлагают выполнять задание и определяют предельное время работы с данной интенсивностью (до начала снижения скорости). Но он почти невозможен. Чаще всего используют косвенный метод.

Косвенный метод – это когда выносливость определяется по времени преодоления какой-нибудь достаточно длиной дистанции (например 10000м).

Список литературы

1. Дедковский С.М. Скорость или выносливость/ С.М. Дедковский – М.: "Физкультура и спорт”, 2006.

2. Егер К., Оельшлегель Г. "Юным спортсменам о тренировке”/ К. Егер - .М., "Физкультура и спорт”, 2004г.

3. Зимкина Н.В. Физиологическая характеристика и методы определения выносливости в спорте/ Н.В. Зимкина – М.: Физкультура и спорт, 2002г.

4. Ломан В. "Бег, прыжки, метания”/ В. Ломан - .М., "Физкультура и спорт”, 2004г.

5. Макаров А. "Бег на средние и длинные дистанции”/ А. Макаров - .М., "Физкультура и спорт”, 2006г.

Выносливость - способность наиболее длительно выполнять специализированную работу аэробного характера без снижения ее эффективности . Выносливость это способность противостоять утомлению .
Различают 2 формы проявления выносливости – общую и специальную.
Общая выносливость способность длительно выполнять любую циклическую работу умеренной мощности с участием больших групп мышц .
Специальная выносливость проявляется в конкретных видах двигательной деятельности.
Физиологической основой общей выносливости является высокий уровень аэробных возможностей человека – способность выполнять работу за счет энергии реакций окисления.
Аэробные возможности зависят от:
Аэробной мощности, которая определяется абсолютной и относительной величиной максимального потребления кислорода (МПК) и Аэробной емкости - суммарной величины потребления кислорода на всю работу.
Общая выносливость зависит от доставки кислорода мышцам, определяется функционированием кислородтранспортной системы: сердечно-сосудистой, дыхательной и системой крови.
Развитие общей выносливости обеспечивается разносторонними перестройками в дыхательной системе. Повышение эффективности дыхания достигается:
Увеличением (на 10-20%) легочных объемов и емкостей (ЖЕЛ достигает 6-8л и более)
Нарастанием глубины дыхания (50% ЖЕЛ)
Увеличением диффузионной способности легких, что обусловлено увеличением альвеолярной поверхности и объема крови в легких, протекающей через расширяющуюся сеть капилляров.
Увеличением мощности и выносливости дыхательных мышц, что приводит к росту объема вдыхаемого воздуха по отношению к функциональной остаточной емкости легких
Все эти изменения способствуют также экономизации дыхания: большему поступлению кислорода в кровь при меньших величинах легочной вентиляции.


Решающую роль в развитии общей выносливости играют морфофункциональные изменения в сердечно-сосудистой системе, отражающие адаптацию к длительной работе:
Увеличение объема сердца , утолщение сердечной мышцы – спортивная гипертрофия
Рост сердечного выброса(увеличение ударного объема крови)
Замедление ЧСС в покое(до 40-50 ударов в минуту) в результате парасимпатических влияний – спортивная брадикардия, что облегчает восстановление сердечной мышцы и последующую ее работоспособность
Снижение артериального давления в покое (ниже 105 мм.рт.ст) – спортивная гипотония.
В системе крови повышению общей выносливости способствуют:
Увеличение объема циркулирующей крови (на 20%), за счет увеличения объема плазмы
Снижение вязкости крови и облегчение кровотока
Больший венозный возврат крови за счет более сильных мощных сокращений сердца
Увеличение общего количества эритроцитов и гемоглобина (но следует отметить, что при росте объема плазмы показатели их относительной концентрации в крови снижаются)
Уменьшение содержания лактата в крови при работе, связанное с преобладанием в мышцах выносливых людей медленных волокон, использующих лактат как источник энергии, и во-вторых, обусловленное увеличение емкости буферных систем крови (щелочных резервов). При этом лактатный порог анаэробного обмена (ПАНО) так же нарастает, как и вентиляционный ПАНО.
В скелетных мышцах преобладают медленные волокна(80-90%). Рабочая гипертрофия протекает по саркоплазматическому типу, т. е. за счет роста объема саркоплазмы. В ней накаливаются запасы гликогена, липидов, миоглобина, становится богаче капиллярная сеть, увеличивается число и размеры митохондрий. Мышечные волокна включатся в работу посменно, восстанавливая свои ресурсы в моменты отдыха.
В ЦНС работа на выносливость сопровождается формированием рабочих доминант, которые обладают высокой помехоустойчивостью, отдаляя развитие запредельного торможения в условиях монотонной работы. Особой способностью к длительным циклическим нагрузкам обладают спортсмены с сильной уравновешенной нервной системой и невысоким уровнем подвижности – флегматики.
Специальная выносливость в циклических видах спорта зависит от длины дистанции, которая определяет соотношение аэробного и анаэробного энергообеспечения. В на длинные дистанции соотношение аэробной и анаэробной работы порядка 95% и 5%. В спринте – 5% и 95%.
Специальная выносливость к статической работе базируется на высокой способности нервных центров и работающих мышц поддерживать непрерывную активность без отдыха в анаэробных условиях.
Силовая выносливость зависит от переносимости нервной системой и двигательным аппаратом многократных повторений натуживания, вызывающего прекращение кровотока в нагруженных мышцах и кислородное голодание мозга. Повышение резервов мышечного гликогена и кислородных запасов в миоглобине облегчает работу мышц. Но так как слишком много ДЕ привлекается к работе, лимит резервных ДЕ становится мал, что лимитирует длительность поддержания усилий.
Скоростная выносливость определяется устойчивостью нервных центров к высокому темпу активности. Она зависит от быстрого восстановления АТФ в анаэробных условиях за счет креатинфосфата и реакций гликолиза.
Выносливость в ситуационных видах спорта обусловлена устойчивостью ЦНС и сенсорных систем к работе переменной мощности и характера – «рваному» режиму, вероятностным перестройкам ситуации, многоальтернативному выбору, сохранению координации при постоянном раздражении вестибулярного аппарата.
Выносливость к вращениям и ускорениям требует хорошей устойчивости вестибулярной системы.
Выносливость к гипоксии, характерна для альпинистов, связана с понижением тканевой чувствительности нервных центров, сердечной и скелетных мышц к недостатку кислорода. Это свойство в значительной степени врожденное.
Резервами выносливости являются:
Мощность механизмов обеспечения гомеостаза – адекватная деятельность сердечно-сосудистой системы, повышение кислородной емкости крови и емкости ее буферных систем, совершенство регуляции водно-солевого обмена выделительной системы и регуляция теплообмена, снижение чувствительности тканей к сдвигам гомеостаза
Тонкая и стабильная нервно-гуморальная регуляция механизмов поддержания гомеостаза и адаптация организма к работе в измененной среде.
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «mobi-up.ru» — Садовые растения. Интересное о цветах. Многолетние цветы и кустарники